Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. CASSIS: Characterization with Adaptive Sample-Size Inferential Statistics Applied to Inexact Circuits
 
conference paper

CASSIS: Characterization with Adaptive Sample-Size Inferential Statistics Applied to Inexact Circuits

Bonnot, Justine
•
Camus, Vincent  
•
Desnos, Karol
Show more
September 3, 2018
2018 IEEE 26th European Signal Processing Conference (EUSIPCO)

To design faster and more energy-efficient systems, numerous inexact arithmetic operators have been proposed, generally obtained by modifying the logic structure of conventional circuits. However, as the quality of service of an application has to be ensured, these operators need to be precisely characterized to be usable in commercial or real-life applications. The characterization of inexact operators is commonly achieved with exhaustive or random bit-accurate gate-level simulations. However, for high word lengths, the time and memory required for such simulations become prohibitive. Besides, when simulating a random sample, no confidence information is given on the precision of the characterization. To overcome these limitations, CASSIS, a new characterization method for inexact operators is proposed. By exploiting statistical properties of the approximation error, the number of simulations needed for precise characterization is drastically reduced. From user-defined confidence requirements, the proposed method computes the minimal number of simulations to obtain the desired accuracy on the characterization. For 32-bit adders, the CASSIS method reduces the number of simulations needed up to a few tens of thousands points.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bonnot_eusipco18.pdf

Access type

openaccess

Size

244 KB

Format

Adobe PDF

Checksum (MD5)

22df08dd45dd19062f1c9d187196830b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés