Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula
 
research article

Polynomiality of Hurwitz numbers, Bouchard-Marino conjecture, and a new proof of the ELSV formula

Dunin-Barkowski, P.
•
Kazarian, M.
•
Orantin, N.  
Show more
2015
Advances In Mathematics

In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formula). Then, using this polynomiality we give a new proof of the Bouchard-Marino conjecture. After that, using the correspondence between the Givental group action and the topological recursion coming from matrix models, we prove the equivalence of the Bouchard-Marino conjecture and the ELSV formula (it is a refinement of an argument by Eynard). (C) 2015 Elsevier Inc. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.aim.2015.03.016
Web of Science ID

WOS:000355358200003

Author(s)
Dunin-Barkowski, P.
Kazarian, M.
Orantin, N.  
Shadrin, S.
Spitz, L.
Date Issued

2015

Publisher

Academic Press Inc Elsevier Science

Published in
Advances In Mathematics
Volume

279

Start page

67

End page

103

Subjects

Hurwitz numbers

•

ELSV formula

•

Bouchard-Marino conjecture

•

Semi-infinite wedge formalism

•

Topological recursion

•

Givental group action

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CSFT  
Available on Infoscience
September 28, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/118927
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés