Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dissipative quantum chaos unveiled by stochastic quantum trajectories
 
research article

Dissipative quantum chaos unveiled by stochastic quantum trajectories

Ferrari, Filippo  
•
Gravina, Luca  
•
Eeltink, Debbie  
Show more
March 17, 2025
Physical Review Research

We define quantum chaos and integrability in open quantum many-body systems as a dynamical property of single stochastic realizations, referred to as quantum trajectories. This definition relies on the predictions of random matrix theory applied to the subset of the Liouvillian eigenspectrum involved in each quantum trajectory. Our approach, which we name spectral statistics of quantum trajectories (SSQT), enables a natural distinction between transient and steady-state quantum chaos as general phenomena in open setups. We test the generality and reliability of the SSQT criterion on several dissipative systems, further showing that an open system with a chaotic structure can evolve towards either a chaotic or integrable steady state. We apply our theoretical framework to two driven-dissipative bosonic systems. First, we study the driven-dissipative Bose-Hubbard model, a paradigmatic example of a quantum simulator, clarifying the interplay of integrability, transient, and steady-state chaos across its phase diagram. Our analysis shows the existence of an emergent dissipative quantum chaotic phase, whereas the classical and semiclassical limits display an integrable behavior. In this regime, chaos arises from the quantum and classical fluctuations associated with the dissipation mechanisms. Second, we investigate dissipative quantum chaos in the dispersive readout of a transmon qubit: a measurement technique ubiquitous in superconducting-based quantum hardware. Through the SSQT, we distinguish several regimes where the performance of the measurement instrument can be connected to the integrable or chaotic nature of the underlying driven-dissipative bosonic system. Our work offers a general understanding of the integrable and chaotic dynamics of open quantum systems and paves the way for the investigation of dissipative quantum chaos and its consequences on state-of-the-art noisy intermediate-scale quantum devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1103_physrevresearch.7.013276.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.12 MB

Format

Adobe PDF

Checksum (MD5)

8257dea8c8c5c305eae620f0bf3fbeca

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés