Publication:

Adjoint-based variational methods for computing invariant solutions in spatio-temporally chaotic PDEs

cris.virtual.author-scopus

56346458000

cris.virtual.department

ECPS

cris.virtual.department

ECPS

cris.virtual.orcid

0000-0001-5684-4681

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

IGM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

EDOC

cris.virtual.parent-organization

IC-SG

cris.virtual.parent-organization

IC

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

268400

cris.virtual.sciperId

231182

cris.virtual.unitId

12653

cris.virtual.unitManager

Schneider, Tobias

cris.virtualsource.author-scopus

cf76d660-ba39-4d52-aa4e-7169625ac6a0

cris.virtualsource.author-scopus

f6f3f27a-c368-4c68-bbdc-648be382df3c

cris.virtualsource.department

cf76d660-ba39-4d52-aa4e-7169625ac6a0

cris.virtualsource.department

f6f3f27a-c368-4c68-bbdc-648be382df3c

cris.virtualsource.orcid

cf76d660-ba39-4d52-aa4e-7169625ac6a0

cris.virtualsource.orcid

f6f3f27a-c368-4c68-bbdc-648be382df3c

cris.virtualsource.parent-organization

e241245b-0e63-4d9e-806e-b766e62006ef

cris.virtualsource.parent-organization

e241245b-0e63-4d9e-806e-b766e62006ef

cris.virtualsource.parent-organization

5c8f5b6a-cecf-492b-8642-d0835aff79a6

cris.virtualsource.parent-organization

5c8f5b6a-cecf-492b-8642-d0835aff79a6

cris.virtualsource.parent-organization

5c8f5b6a-cecf-492b-8642-d0835aff79a6

cris.virtualsource.parent-organization

8707ee70-5df5-4251-a084-d7cda25ef51e

cris.virtualsource.parent-organization

8707ee70-5df5-4251-a084-d7cda25ef51e

cris.virtualsource.parent-organization

8707ee70-5df5-4251-a084-d7cda25ef51e

cris.virtualsource.parent-organization

8707ee70-5df5-4251-a084-d7cda25ef51e

cris.virtualsource.parent-organization

9c60066f-e07d-4cd0-a4f1-34b6aec565a2

cris.virtualsource.parent-organization

9c60066f-e07d-4cd0-a4f1-34b6aec565a2

cris.virtualsource.parent-organization

9c60066f-e07d-4cd0-a4f1-34b6aec565a2

cris.virtualsource.parent-organization

9c60066f-e07d-4cd0-a4f1-34b6aec565a2

cris.virtualsource.parent-organization

9c60066f-e07d-4cd0-a4f1-34b6aec565a2

cris.virtualsource.rid

cf76d660-ba39-4d52-aa4e-7169625ac6a0

cris.virtualsource.rid

f6f3f27a-c368-4c68-bbdc-648be382df3c

cris.virtualsource.sciperId

cf76d660-ba39-4d52-aa4e-7169625ac6a0

cris.virtualsource.sciperId

f6f3f27a-c368-4c68-bbdc-648be382df3c

cris.virtualsource.unitId

8707ee70-5df5-4251-a084-d7cda25ef51e

cris.virtualsource.unitManager

8707ee70-5df5-4251-a084-d7cda25ef51e

datacite.rights

openaccess

dc.contributor.advisor

Schneider, Tobias

dc.contributor.author

Ashtari, Omid

dc.date.accepted

2024

dc.date.accessioned

2024-10-09T07:56:58Z

dc.date.available

2024-10-09T07:56:58Z

dc.date.created

2024-10-09

dc.date.issued

2024

dc.date.modified

2025-01-24T07:09:24.573776Z

dc.description.abstract

One approach for describing spatio-temporally chaotic dynamical systems, including fluid turbulence, is to study non-chaotic but unstable invariant solutions embedded within the chaotic attractor of the system. These include steady, periodic, and quasi-periodic solutions, as well as connecting orbits between them. Individual invariant solutions are able to capture essential features of the observed spatio-temporal structures, and collectively, they promise a framework for quantitatively predicting the statistics of the system. However, computing invariant solutions for high-dimensional chaotic systems remains challenging. The standard shooting-based methods exhibit poor convergence properties since they rely on time-marching the chaotic dynamics, resulting in exponential error amplification.

We develop a family of adjoint-based variational methods for computing unstable invariant solutions. Our methods eliminate the need for any time-marching of the chaotic dynamics. Hence, they are not affected by the exponential error amplification associated with time-marching a chaotic system and converge robustly from inaccurate initial guesses. These methods are formulated such that no construction and inversion of Jacobian matrices is required. As a consequence, these methods show favorable memory scalings and can thus be applied to very high-dimensional problems including 3D fluid flows. As a proof of concept, we apply the introduced methods to the 1D Kuramoto-Sivashinsky equation. We demonstrate the robustness of the methods by computing multiple periodic and connecting orbits in a spatio-temporally chaotic regime of this model system.

The primary challenge in applying these methods to 3D wall-bounded flows lies in handling the pressure field in the presence of solid walls. We formulate the variational dynamics in a way that explicit computation of pressure is circumvented. Instead, our formulation employs the influence matrix method. We demonstrate the method by computing multiple equilibria for plane Couette flow starting from inaccurate initial guesses extracted from a turbulent time series. We also introduce a data-driven technique based on dynamic mode decomposition (DMD) to accelerate the convergence of the variational method.

We employ our family of adjoint-based variational methods to formalize the phenomenon of saddle-node bifurcation ghosts by defining representative state-space structures for this phenomenon. Our methods provide a unifying framework for computing invariant solutions and their ghosts as the global and local minima of a suitably defined cost function, respectively. We show the family of methods for a range of dynamical systems of various complexities, including the 3D Rayleigh-Bénard convection.

dc.description.sponsorship

ECPS

dc.identifier.doi

10.5075/epfl-thesis-10460

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/241508

dc.language.iso

en

dc.publisher

EPFL

dc.publisher.place

Lausanne

dc.size

182

dc.source

THESIS

dc.subject

spatio-temporal chaos

dc.subject

turbulence

dc.subject

invariant solutions

dc.subject

variational methods

dc.subject

adjoint-based minimization

dc.subject

influence matrix method

dc.subject

dynamic mode decomposition

dc.subject

saddle-node bifurcation ghosts

dc.title

Adjoint-based variational methods for computing invariant solutions in spatio-temporally chaotic PDEs

dc.type

thesis::doctoral thesis

dspace.entity.type

Publication

epfl.thesis.doctoralSchool

EDME

epfl.thesis.faculty

STI

epfl.thesis.institute

IGM

epfl.thesis.jury

Prof. Brice Tanguy Alphonse Lecampion (président) ; Prof. Tobias Schneider (directeur de thèse) ; Prof. François Gallaire, Prof. Genta Kawahara, Prof. Laurette Tuckerman (rapporteurs)

epfl.thesis.number

10460

epfl.thesis.originalUnit

ECPS

epfl.thesis.publicDefenseYear

2024-10-11

epfl.writtenAt

EPFL

oaire.licenseCondition

N/A

oaire.version

http://purl.org/coar/version/c_be7fb7dd8ff6fe43

oairecerif.advisor.affiliation

EPFL

oairecerif.affiliation.orgunit

ECPS

oairecerif.author.affiliation

EPFL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EPFL_TH10460.pdf
Size:
15.31 MB
Format:
Adobe Portable Document Format

Collections