Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A novel statistical generative model dedicated to face recognition
 
research article

A novel statistical generative model dedicated to face recognition

Heusch, Guillaume
•
Marcel, Sébastien  
2010
Image & Vision Computing

In this paper, a novel statistical generative model to describe a face is presented, and is applied to the face authentication task. Classical generative models used so far in face recognition, such as Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) for instance, are making strong assumptions on the observations derived from a face image. Indeed, such models usually assume that local observations are independent, which is obviously not the case in a face. The presented model hence proposes to encode relationships between salient facial features by using a static Bayesian Network. Since robustness against imprecisely located faces is of great concern in a real-world scenario, authentication results are presented using automatically localised faces. Experiments conducted on the XM2VTS and the BANCA databases showed that the proposed approach is suitable for this task, since it reaches state-of-the-art results. We compare our model to baseline appearance-based systems (Eigenfaces and Fisherfaces) but also to classical generative models, namely GMM, HMM and pseudo-2DHMM. (C) 2009 Elsevier B.V. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Heusch_IVC_2009.pdf

Access type

openaccess

Size

1 MB

Format

Adobe PDF

Checksum (MD5)

47cce794b99720c3e1c6e620133bedab

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés