Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Silver Complexes of Cyclic Hexachlorotriphosphazene
 
research article

Silver Complexes of Cyclic Hexachlorotriphosphazene

Gonsior, Marcin
•
Antonijevic, Sasa  
•
Krossing, Ingo  
2006
Chemistry - A European Journal

The first solid-state structures of complexed P3N3X6 (X=halogen) are reported for X=Cl. The compounds were obtained from P3N3Cl6 and Ag[Al(OR)4] salts in CH2Cl2/CS2 solution. The very weakly coordinating anion with R=C(CF3)3 led to the salt Ag(P3N3Cl6)2+[Al(OR)4]- (1), but the more strongly coordinating anion with R=C(CH3)(CF3)2 gave the molecular adduct (P3N3Cl6)AgAl(OR)4 (3). Crystals of [Ag(CH2Cl2)(P3N3Cl6)2]+[Al(OR)4]- (2), in which Ag+ is coordinated by two phosphazene and one CH2Cl2 ligands, were isolated from CH2Cl2 solution. The three compounds were characterized by their X-ray structures, and 1 and 3 also by NMR and vibrational spectroscopy. Solution and solid-state 31P NMR investigations in combination with quantum chemically calculated chemical shifts show that the 31P NMR shifts of free and silver-coordinated P3N3Cl6 differ by less than 3 ppm and indicate a very weakly bound P3N3Cl6 ligand in 1. The experimental silver ion affinity (SIA) of the phosphazene ligand was derived from the solid-state structure of 3. The SIA shows that (PNCl2)3 is only a slightly stronger Lewis base than P4 and CH2Cl2, while other ligands such as S8, P4S3, toluene, and 1,2-Cl2C2H4 are far stronger ligands towards the silver cation. The energetics of the complexes were assessed with inclusion of entropic, thermal, and solvation contributions (MP2/TZVPP, COSMO). The formation of the cations in 1, 2, and 3 was calculated to be exergonic by DeltarG°(CH2Cl2)=-97, -107, and -27 kJ mol-1, respectively. All prepared complexes are thermally stable; formation of P3N3Cl5+ and AgCl was not observed, even at 60 °C in an ultrasonic bath. Therefore, the formation of P3N3Cl5+ was investigated by quantum chemical calculations. Other possible reaction pathways that could lead to the successful preparation of P3N3X5+ salts were defined.

  • Details
  • Metrics
Type
research article
DOI
10.1002/chem.200500236
Web of Science ID

WOS:000235762000015

Author(s)
Gonsior, Marcin
Antonijevic, Sasa  
Krossing, Ingo  
Date Issued

2006

Published in
Chemistry - A European Journal
Volume

12

Issue

7

Start page

1997

End page

2008

Subjects

ab initio calculations

•

cations

•

NMR spectroscopy

•

phosphazenes

•

silver

•

weakly coordinating anions

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCIC  
Available on Infoscience
March 7, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/3557
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés