Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Orthologic with Axioms
 
conference paper

Orthologic with Axioms

Guilloud, Simon  
•
Kuncak, Viktor  
January 1, 2024
Proceedings of The ACM on Programming Languages
51st ACM SIGPLAN Symposium on Principles of Programming Languages

We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having polynomial-time equivalence checking that is sound with respect to Boolean algebra semantics. We generalize ortholattice reasoning and obtain an algorithm for proving a larger class of classically valid formulas. As the key result, we analyze a proof system for orthologic augmented with axioms. An important feature of the system is that it limits the number of formulas in a sequent to at most two, which makes the extension with axioms non-trivial. We show a generalized form of cut elimination for this system, which implies a sub-formula property. From there we derive a cubic-time algorithm for provability from axioms, or equivalently, for validity in finitely presented ortholattices. We further show that propositional resolution of width 5 proves all formulas provable in orthologic with axioms. We show that orthologic system subsumes resolution of width 2 and arbitrarily wide unit resolution and is complete for reasoning about generalizations of propositional Horn clauses. Moving beyond ground axioms, we introduce effectively propositional orthologic (by analogy with EPR for classical logic), presenting its semantics as well as a sound and complete proof system. Our proof system implies the decidability of effectively propositional orthologic, as well as its fixed-parameter tractability for a bounded maximal number of variables in each axiom. As a special case, we obtain a generalization of Datalog with negation and disjunction.

  • Files
  • Details
  • Versions
  • Metrics
Loading...
Thumbnail Image
Name

POPL_2024___Orthologic_with_Axioms_errata.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_e19f295774971610

Access type

openaccess

License Condition

CC BY-NC-SA

Size

655.36 KB

Format

Adobe PDF

Checksum (MD5)

f6e56c35fbac2d7c8078e8573296d522

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés