Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Highly Hygroscopic Aerosols Facilitate Summer and Early‐Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean
 
research article

Highly Hygroscopic Aerosols Facilitate Summer and Early‐Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean

Duplessis, P.
•
Karlsson, L.
•
Baccarini, A.  
Show more
2024
Journal of Geophysical Research: Atmospheres

Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations are generally very low in the high Arctic. The environment changes rapidly around freeze-up as the open waters close and snow starts accumulating on ice. We investigated droplet formation during eight significant fog events in the central Arctic Ocean, north of 80°, from August 12 to 19 September 2018 during the Arctic Ocean 2018 expedition onboard the icebreaker Oden. Calculated hygroscopicity parameters (κ) for the entire study were very high (up to κ = 0.85 ± 0.13), notably after freeze-up, suggesting that atmospheric particles were very cloud condensation nuclei (CCN)-active. At least one of the events showed that surface clouds were able to form and persist for at least a couple hours at aerosol concentrations less than 10 cm−3, which was previously suggested to be the minimum for cloud formation. Among these events that were considered limited in CCN, effective radii were generally larger than in the high CCN cases. In some of the fog events, droplet residuals particles did not reactivate under supersaturations up to 0.95%, suggesting either in-droplet reactions decreased hygroscopicity, or an ambient supersaturation above 1%. These results provide insight into droplet formation during the clean late-summer and fall of the high Arctic with limited influence from continental sources.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JGR Atmospheres - 2024 - Duplessis - Highly Hygroscopic Aerosols Facilitate Summer and Early‐Autumn Cloud Formation at.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

80d7979294e88d315654e6170e447cb2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés