Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. An EEG-based brain-computer interface for gait training
 
conference paper

An EEG-based brain-computer interface for gait training

Liu, Dong
•
Chen, Weihai
•
Lee, Kyuhwa  
Show more
2017
Proceedings 29th Chinese Control and Decision Conference
29th Chinese Control and Decision Conference

This work presents an electroencephalography (EEG)-based Brain-computer Interface (BCI) that decodes cerebral activities to control a lower-limb gait training exoskeleton. Motor imagery (MI) of flexion and extension of both legs was distinguished from the EEG correlates. We executed experiments with 5 able-bodied individuals under a realistic rehabilitation scenario. The Power Spectral Density (PSD) of the signals was extracted with sliding windows to train a linear discriminate analysis (LDA) classifier. An average classification accuracy of 0.67±0.07 and AUC of 0.77±0.06 were obtained in online recordings, which confirmed the feasibility of decoding these signals to control the gait trainer. In addition, discriminative feature analysis was conducted to show the modulations during the mental tasks. This study can be further implemented with different feedback modalities to enhance the user performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CCDC2017_Dong.pdf

Access type

openaccess

Size

1.39 MB

Format

Adobe PDF

Checksum (MD5)

e96218b33cff3619bb41583a3043191b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés