Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High kinetic inductance cavity arrays for compact band engineering and topology-based disorder meters
 
research article

High kinetic inductance cavity arrays for compact band engineering and topology-based disorder meters

Jouanny, Vincent  
•
Frasca, Simone  
•
Weibel, Vera Jo  
Show more
December 1, 2025
Nature Communications

Superconducting microwave metamaterials offer enormous potential for quantum optics and information science, enabling the development of advanced quantum technologies for sensing and amplification. In the context of circuit quantum electrodynamics, such metamaterials can be implemented as coupled cavity arrays (CCAs). In the continuous effort to miniaturize quantum devices for increasing scalability, minimizing the footprint of CCAs while preserving low disorder becomes paramount. In this work, we present a compact CCA architecture using superconducting NbN thin films manifesting high kinetic inductance. The latter enables high-impedance CCA (~1.5 kΩ), while reducing the resonator footprint. We demonstrate its versatility and scalability by engineering one-dimensional CCAs with up to 100 resonators and with structures that exhibit multiple bandgaps. Additionally, we quantitatively investigate disorder in the CCAs using symmetry-protected topological SSH edge modes, from which we extract a resonator frequency scattering of 0.22−0.03+0.04%. Our platform opens up exciting prospects for analog quantum simulations of many-body physics with ultrastrongly coupled emitters.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-025-58595-8.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.38 MB

Format

Adobe PDF

Checksum (MD5)

fbd8ff5e8a04122d891abb5de5aa482e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés