Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Photonic Nanojet engineering: Focal point shaping with scattering phenomena of dielectric microspheres
 
conference paper

Photonic Nanojet engineering: Focal point shaping with scattering phenomena of dielectric microspheres

Kim, Myun-Sik  
•
Scharf, Toralf  
•
Mühlig, Stefan
Show more
Broquin, Jean Emmanuel
•
Conti, Gualtiero Nunzi
2011
Integrated Optoelectronic: Devices, Materials, and Technologies XV
Photonics West 2011

We experimentally engineer Nanojets produced by dielectric spheres by varying the illumination and observe the effect with a high-resolution interference microscope (HRIM). Converging and diverging spherical wavefronts and Bessel- Gauss beams are considered. We find that the diverging wavefront pushes Nanojets away from the surface of the sphere without change of the spot size. This allows earning several micrometers of working distance contrary to the Nanojet confined at the sphere’s surface. When the radius of curvature of the incident wavefront is greater than about 5 times the sphere size, the Nanojet moves back to the sphere surface like it is found for plane wave incidence. On-axis Bessel- Gauss beam illumination with the central lobe covering the whole sphere leads to the same results as the plane wave case. Off-axis Bessel beam illumination can generate multiple-spot Nanojets. We demonstrate the separation of such spots of about 220 nm at 642 nm. This separation is smaller than the feature sizes defined by the diffraction limit at this wavelength. We discuss briefly applications of engineered Nanojets for nano-lithography and near-field sensing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Photonics_West_2011_Myunsik_Kim.pdf

Access type

openaccess

Size

446.6 KB

Format

Adobe PDF

Checksum (MD5)

de02fd79d85e2911c4f1dcfc717549e7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés