Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow
 
research article

Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow

Burman, Erik
•
Puppi, Riccardo  
October 18, 2021
Journal Of Numerical Mathematics

We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a consistent discretization depending on a weighting parameter scaling as $\mathcal O(h^{-1})$, while the other is a penalty-type formulation obtained as the discretization of a perturbation of the original problem and relies on a parameter scaling as $\mathcal O(h^{-k-1})$, $k$ being the order of the Raviart-Thomas space. We rigorously prove that both methods are stable and result in optimal convergent numerical schemes with respect to appropriate mesh-dependent norms, although the chosen norms do not scale as the usual $L^2$-norm. However, we are still able to recover the optimal a priori $L^2$-error estimates for the velocity field, respectively, for high-order and the lowest-order Raviart-Thomas discretizations, for the first and second numerical schemes. Finally, some numerical examples validating the theory are exhibited.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

main.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

n/a

Size

565.02 KB

Format

Adobe PDF

Checksum (MD5)

10e377c219b113d0d8defb778f374514

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés