Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Temporal Spiking Recurrent Neural Network for Action Recognition
 
research article

Temporal Spiking Recurrent Neural Network for Action Recognition

Wang, Wei  
•
Hao, Siyuan
•
Wei, Yunchao
Show more
January 1, 2019
IEEE Access

In this paper, we propose a novel temporal spiking recurrent neural network (TSRNN) to perform robust action recognition in videos. The proposed TSRNN employs a novel spiking architecture which utilizes the local discriminative features from high-confidence reliable frames as spiking signals. The conventional CNN-RNNs typically used for this problem treat all the frames equally important such that they are error-prone to noisy frames. The TSRNN solves this problem by employing a temporal pooling architecture which can help RNN select sparse and reliable frames and enhances its capability in modelling long-range temporal information. Besides, a message passing bridge is added between the spiking signals and the recurrent unit. In this way, the spiking signals can guide RNN to correct its long-term memory across multiple frames from contamination caused by noisy frames with distracting factors (e.g., occlusion, rapid scene transition). With these two novel components, TSRNN achieves competitive performance compared with the state-of-the-art CNN-RNN architectures on two large scale public benchmarks, UCF101 and HMDB51.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Final Version.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.02 MB

Format

Adobe PDF

Checksum (MD5)

ccb7c41c018268870a7ab55844ce7f86

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés