Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Enhancing posterior based speech recognition systems
 
doctoral thesis

Enhancing posterior based speech recognition systems

Ketabdar, Hamed
2008

The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this thesis, we present a principled framework for enhancing the estimation of local posteriors, by integrating phonetic and lexical knowledge, as well as long contextual information. This framework allows for hierarchical estimation, integration and use of local posteriors from the phoneme up to the word level. We propose two approaches for enhancing the posteriors. In the first approach, phoneme posteriors estimated with an ANN (particularly multi-layer Perceptron – MLP) are used as emission probabilities in HMM forward-backward recursions. This yields new enhanced posterior estimates integrating HMM topological constraints (encoding specific phonetic and lexical knowledge), and long context. In the second approach, a temporal context of the regular MLP posteriors is post-processed by a secondary MLP, in order to learn inter and intra dependencies among the phoneme posteriors. The learned knowledge is integrated in the posterior estimation during the inference (forward pass) of the second MLP, resulting in enhanced posteriors. The use of resulting local enhanced posteriors is investigated in a wide range of posterior based speech recognition systems (e.g. Tandem and hybrid HMM/ANN), as a replacement or in combination with the regular MLP posteriors. The enhanced posteriors consistently outperform the regular posteriors in different applications over small and large vocabulary databases.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH4218.pdf

Access type

openaccess

Size

1008.16 KB

Format

Adobe PDF

Checksum (MD5)

7057f9f00cafccbc56d6519d114bf17d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés