Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adhesively bonded lap joints from pultruded GFRP profiles. Part III: Effects of chamfers
 
research article

Adhesively bonded lap joints from pultruded GFRP profiles. Part III: Effects of chamfers

Vallée, T.  
•
Keller, T.  
2006
Composites Part B

Quasi-static axial tension experiments were performed in a laboratory environment on epoxy bonded, balanced double-lap joints composed of pultruded GFRP flat profiles. The parameters investigated were the overlap length (from 50 to 100 mm), the adhesive layer thickness (I and 3 mm) and the degree of chamfering of the adherends. The measured axial strain profiles in the joints correlated well with numerical results obtained from a 2D finite element analysis. Failure initiation and propagation always occurred in the outer fiber-mat layers of the adherends. Charnfering reduced and smoothed the through-thickness tensile and shear stress peaks towards the chamfered joint edges. However, joint strength was not significantly improved by chamfering. The joint strength was predicted by means of a quadratic shear-tensile failure criterion for a failure location in the outer fiber-mat layer of the pultruided adherends and compared well to the measurements. The adhesive layer thickness had an insignificant influence on the stress-strain distributions along the overlaps and joint strengh. [All rights reserved Elsevier]

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.compositesb.2005.11.002
Web of Science ID

WOS:000236654300009

Author(s)
Vallée, T.  
Keller, T.  
Date Issued

2006

Published in
Composites Part B
Volume

37

Issue

4-5

Start page

328

End page

336

Subjects

Adhesives

•

Finite element analysis

•

Glass fiber reinforced

•

plastics

•

Stress-strain relations

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CCLAB  
Available on Infoscience
June 22, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/9279
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés