Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Application of multiphysics model order reduction to doppler/neutronic feedback
 
research article

Application of multiphysics model order reduction to doppler/neutronic feedback

German, Peter
•
Ragusa, Jean C.
•
Fiorina, Carlo  
November 14, 2019
EPJ Nuclear Sciences & Technologies

In this paper, a proper orthogonal decomposition based reduced-order model is presented for parametrized multiphysics computations. Our application physics is Doppler feedback in a simplified model of the molten salt fast reactor concept. The reduced model is created using the method of snapshots where the offline training set is obtained by exercising a full-order model created with the OpenFOAM based multiphysics solver, GeN-Foam. The steady state models solve the multi-group diffusion k-eigenvalue equations with moving precursors together with the energy equation. A fixed velocity field is assumed throughout the computations, hence the momentum and continuity equations are not solved. The discrete empirical interpolation method is used for the efficient coupling of the ROM solvers, while the input parameter space is surveyed using the improved distributed latin hypercube sampling algorithm.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

epjn190020.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

784.98 KB

Format

Adobe PDF

Checksum (MD5)

0bbb518cbbaf321f3df989e91194cbe4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés