Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Similarity-Aware Query Allocation in Sensor Networks with Multiple Base Stations
 
conference paper

Similarity-Aware Query Allocation in Sensor Networks with Multiple Base Stations

Xiang, Shili
•
Lim, Hock Beng
•
Tan, Kian-Lee
Show more
2007
Proceedings of the 4th International Workshop on Data Management for Sensor Networks
4th International Workshop on Data Management for Sensor Networks in conjunction with VLDB 2007 (DMSN'07)

In this paper, we consider a large scale sensor network comprising multiple, say K, base stations and a large number of wireless sensors. Such an infrastructure is expected to be more energy efficient and scale well with the size of the sensor nodes. To support a large number of queries, we examine the problem of allocating queries across the base stations to minimize the total data communication cost among the sensors. In particular, we examine similarity-aware techniques that exploit the similarities among queries when allocating queries, so that queries that require data from a common set of sensor nodes are allocated to the same base stations. We first approximate the problem of allocating queries to K base stations as a max-K-cut problem, and adapts an existing solution to our context. However, the scheme only works in a static context, where all queries are known in advance. In order to operate in a dynamic environment with frequent query arrivals and termination, we further propose a novel similarity-aware strategy that allocates queries to base stations one at a time. We also propose several heuristics to order a batch of queries for incremental allocation. We conducted experiments to evaluate our proposed schemes, and our results show that our similarity-aware query allocation schemes can effectively exploit the sharing among queries to greatly reduce the communication cost.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

dmsn07.pdf

Access type

openaccess

Size

222.07 KB

Format

Adobe PDF

Checksum (MD5)

7ead05ee1a02d6e1abbe7d0ae18a181e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés