Publication:

On the performance of metrics to predict quality in point cloud representations

cris.lastimport.scopus

2024-08-07T13:14:56Z

cris.legacyId

230116

cris.virtual.author-scopus

35560920500

cris.virtual.department

GR-EB

cris.virtual.orcid

0000-0002-9900-3687

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

274471

cris.virtual.sciperId

105043

cris.virtual.unitId

11889

cris.virtual.unitManager

Ebrahimi, Touradj

cris.virtualsource.author-scopus

bc8e2423-28c5-496f-aa09-dbaa617b28cd

cris.virtualsource.author-scopus

e93a1e87-8ee3-4ffd-bfc4-a6c996a6c7da

cris.virtualsource.department

bc8e2423-28c5-496f-aa09-dbaa617b28cd

cris.virtualsource.department

e93a1e87-8ee3-4ffd-bfc4-a6c996a6c7da

cris.virtualsource.orcid

bc8e2423-28c5-496f-aa09-dbaa617b28cd

cris.virtualsource.orcid

e93a1e87-8ee3-4ffd-bfc4-a6c996a6c7da

cris.virtualsource.parent-organization

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

cris.virtualsource.parent-organization

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

cris.virtualsource.parent-organization

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

cris.virtualsource.parent-organization

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

cris.virtualsource.rid

bc8e2423-28c5-496f-aa09-dbaa617b28cd

cris.virtualsource.rid

e93a1e87-8ee3-4ffd-bfc4-a6c996a6c7da

cris.virtualsource.sciperId

bc8e2423-28c5-496f-aa09-dbaa617b28cd

cris.virtualsource.sciperId

e93a1e87-8ee3-4ffd-bfc4-a6c996a6c7da

cris.virtualsource.unitId

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

cris.virtualsource.unitManager

7b98f3ec-6c67-4c30-b4c6-655da0f9002b

datacite.rights

openaccess

dc.contributor.author

Alexiou, Evangelos

dc.contributor.author

Ebrahimi, Touradj

dc.date.accessioned

2017-08-07T19:31:13

dc.date.available

2017-08-07T19:31:13

dc.date.created

2017-08-07

dc.date.issued

2017

dc.date.modified

2025-05-19T12:29:50.472457Z

dc.description.abstract

Point clouds are a promising alternative for immersive representation of visual contents. Recently, an increased interest has been observed in the acquisition, processing and rendering of this modality. Although subjective and objective evaluations are critical in order to assess the visual quality of media content, they still remain open problems for point cloud representation. In this paper we focus our efforts on subjective quality assessment of point cloud geometry, subject to typical types of impairments such as noise corruption and compression-like distortions. In particular, we propose a subjective methodology that is closer to real-life scenarios of point cloud visualization. The performance of the state-of-the-art objective metrics is assessed by considering the subjective scores as the ground truth. Moreover, we investigate the impact of adopting different test methodologies by comparing them. Advantages and drawbacks of every approach are reported, based on statistical analysis. The results and conclusions of this work provide useful insights that could be considered in future experimentation.

dc.description.notes

Dataset release information available at: https://www.epfl.ch/labs/mmspg/geometry-point-cloud-dataset/

dc.description.sponsorship

GR-EB

dc.identifier.doi

10.1117/12.2275142

dc.identifier.isi

WOS:000418443700043

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/139561

dc.publisher

Spie-Int Soc Optical Engineering

dc.publisher.place

Bellingham

dc.relation

https://infoscience.epfl.ch/record/230116/files/2017-SPIE.pdf

dc.relation.conference

SPIE Optical Engineering + Applications

dc.relation.isbn

978-1-5106-1250-1

dc.relation.isbn

978-1-5106-1249-5

dc.relation.ispartof

Applications of Digital Image Processing XL

dc.relation.ispartofseries

Proceedings of SPIE; 10396

dc.size

16

dc.subject

point cloud

dc.subject

quality assessment

dc.subject

subjective methodologies

dc.subject

quality metrics

dc.title

On the performance of metrics to predict quality in point cloud representations

dc.type

text::conference output::conference proceedings::conference paper

dspace.entity.type

Publication

dspace.file.type

Postprint

dspace.legacy.oai-identifier

oai:infoscience.tind.io:230116

epfl.lastmodified.email

evangelos.alexiou@epfl.ch

epfl.legacy.itemtype

Conference Papers

epfl.legacy.submissionform

CONF

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

STI

epfl.oai.currentset

conf

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.conferenceDate

August 6-10, 2017

oaire.citation.conferencePlace

San Diego, California, USA

oaire.citation.startPage

103961H

oaire.version

http://purl.org/coar/version/c_ab4af688f83e57aa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2017-SPIE.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Postprint

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: