Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Predizione del tipo di mutazione nelle malattie mitocondriali primarie tramite modelli di machine learning applicati a dati clinici non genetici né istologici
 
research article

Predizione del tipo di mutazione nelle malattie mitocondriali primarie tramite modelli di machine learning applicati a dati clinici non genetici né istologici

Mazzucato, Sara
•
Lopriore, Piervito
•
Daddoveri, Francesco
Show more
October 1, 2025
Recenti progressi in medicina

This study shows that machine learning can accurately distinguish between mitochondrial and nuclear DNA mutations in primary mitochondrial diseases using only non-genetic and non-histological clinical data. While language models underperform in comparison, they show potential as complementary diagnostic tools.

  • Details
  • Metrics
Type
research article
DOI
10.1701/4573.45801
Scopus ID

2-s2.0-105017739785

PubMed ID

41037385

Author(s)
Mazzucato, Sara

Sant'Anna Scuola Universitaria Superiore Pisa

Lopriore, Piervito

Università di Pisa

Daddoveri, Francesco

Università di Pisa

Lamperti, Costanza

Foundation IRCCS Neurological Institute "C. Besta"

Carelli, Valerio

Istituto delle Scienze Neurologiche di Bologna

Musumeci, Olimpia

Università degli Studi di Messina

Servidei, Serenella

Fondazione Policlinico Universitario Agostino Gemelli IRCCS

Micera, Silvestro  

École Polytechnique Fédérale de Lausanne

Mancuso, Michelangelo

Università di Pisa

Bandini, Andrea

Sant'Anna Scuola Universitaria Superiore Pisa

Date Issued

2025-10-01

Published in
Recenti progressi in medicina
Volume

116

Issue

10

Start page

613

End page

614

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TNE  
Available on Infoscience
October 14, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/254911
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés