Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Stability of valence alternation pairs across the substoichiometric region at Ge/GeO2 interfaces
 
conference paper

Stability of valence alternation pairs across the substoichiometric region at Ge/GeO2 interfaces

Binder, Jan Felix  
•
Broqvist, Peter  
•
Pasquarello, Alfredo  
2012
26th International Conference on Defects in Semiconductors (ICDS)

Through hybrid density functional calculations, we compare the Ge-Ge bond energy with the formation energy of a valence alternation pair as the O concentration varies across the Ge/GeO2 interface. First, hole trapping energies are calculated for three atomistic models with different O concentrations: bulk Ge with isolated O atoms, amorphous GeO, and amorphous GeO2 with an O vacancy. The reaction is then broken down in three steps involving the breaking of a Ge-Ge bond, charge transfer processes involving dangling bonds, and the formation of a threefold coordinated O atom. The energy of each elemental reaction is estimated through suitable model calculations. The charge transition levels resulting from this analysis agree with those obtained for the atomistic models. Our estimates indicate that hole trapping at low O concentrations occurs at no energy cost for p-type germanium owing to the formation of threefold-coordinated O atoms. Applied to n-type Ge, our analysis indicates that electron trapping in dangling bonds obtained from the breaking of Ge-Ge bonds is unfavorable. The formation energy of a valence alternation pair is evaluated and discussed in relation to previous results. (C) 2011 Elsevier B.V. All rights reserved.

  • Files
  • Details
  • Versions
  • Metrics
Loading...
Thumbnail Image
Name

nelson.pdf

Type

Main Document

Version

Accepted version

Access type

openaccess

License Condition

N/A

Size

427.63 KB

Format

Adobe PDF

Checksum (MD5)

d369e7ee3332f45361cbee6678bdcdba

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés