Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photoinduced Stark Effects and Mechanism of Ion Displacement in Perovskite Solar Cell Materials
 
research article

Photoinduced Stark Effects and Mechanism of Ion Displacement in Perovskite Solar Cell Materials

Pazoki, Meysam
•
Jacobsson, T. Jesper  
•
Kullgren, Jolla
Show more
2017
Acs Nano

Organometallic halide perovskites (OMHPs) have recently emerged as a promising class of materials in photovoltaic technology. Here, we present an in-depth investigation of the physics in these systems by measuring the photoinduced absorption (PIA) in OMHPs as a function of materials composition, excitation wavelength, and modulation frequency. We report a photoinduced Stark effect that depends on the excitation wavelength and on the dipole strength of the monovalent cations in the A position of the ABX(3) perovskite. The results presented are corroborated by density functional theory calculations and provide fundamental information about the photoinduced local electric field change under blue and red excitation as well as insights into the mechanism of light induced ion displacement in OMHPs. For optimized perovskite solar cell devices beyond 19% efficiency, we show that excess thermalization energy of blue photons plays a role in overcoming the activation energy for ion diffusion.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acsnano.6b07916
Web of Science ID

WOS:000398014900049

Author(s)
Pazoki, Meysam
Jacobsson, T. Jesper  
Kullgren, Jolla
Johansson, Erik M. J.
Hagfeldt, Anders  
Boschloo, Gerrit
Edvinsson, Tomas
Date Issued

2017

Publisher

Amer Chemical Soc

Published in
Acs Nano
Volume

11

Issue

3

Start page

2823

End page

2834

Subjects

Stark effect

•

photoinduced ion migration

•

perovskite solar cells

•

CH3NH3PbI3

•

mixed halide perovskites

•

cation-dependent ion movement

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSPM  
Available on Infoscience
May 1, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/136857
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés