Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. In vivo characterization of brain metabolism by 1 H MRS, 13 C MRS and 18 FDG PET reveals significant glucose oxidation of invasively growing glioma cells
 
research article

In vivo characterization of brain metabolism by 1 H MRS, 13 C MRS and 18 FDG PET reveals significant glucose oxidation of invasively growing glioma cells

Lai, Marta  
•
Vassallo, Irene
•
Lanz, Bernard
Show more
2018
International Journal of Cancer

Glioblastoma are notorious for their highly invasive growth, diffusely infiltrating adjacent brain structures that precludes complete resection, and is a major obstacle for cure. To characterize this "invisible" tumor part, we designed a high resolution multimodal imaging approach assessing in vivo the metabolism of invasively growing glioma xenografts in the mouse brain. Animals were subjected longitudinally to Magnetic Resonance Imaging (MRI) and (1) H spectroscopy (MRS) at ultra high field (14.1 Tesla) that allowed the measurement of 16 metabolic biomarkers to characterize the metabolic profiles. As expected, the neuronal functionality was progressively compromised as indicated by decreasing N-acetyl aspartate, glutamate and gamma-aminobutyric acid, and reduced neuronal TCA cycle (-58%) and neurotransmission (-50%). The dynamic metabolic changes observed, captured differences in invasive growth that was modulated by reexpression of the tumor suppressor gene WNT inhibitory factor 1 (WIF1) in the orthotopic xenografts that attenuates invasion. At late stage mice were subjected to (13) C MRS with infusion of [1,6-(13) C]glucose and (18) FDG Positron Emission Tomography (PET) to quantify cell-specific metabolic fluxes involved in glucose metabolism. Most interestingly, this provided the first in vivo evidence for significant glucose oxidation in glioma cells. This suggests that the infiltrative front of glioma does not undergo the glycolytic switch per se, but that environmental triggers may induce metabolic reprogramming of tumor cells.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Lai_Glioma_IntlJCanc_2018.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.14 MB

Format

Adobe PDF

Checksum (MD5)

1cc58127c8b9f56c40d09a9fe160a3c8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés