Dynamic spatio-temporal patterns of metapopulation occupancy in patchy habitats
Spatio-temporal dynamics in habitat suitability and connectivity among mosaics of heterogeneous wetlands are critical for biological diversity and species persistence in aquatic patchy landscapes. Despite the recognized importance of stochastic hydroclimatic forcing in driving wetlandscape hydrological dynamics, linking such effects to emergent dynamics of metapopulation poses significant challenges. To fill this gap, we propose here a dynamic stochastic patch occupancy model (SPOM), which links parsimonious hydrological and ecological models to simulate spatio-temporal patterns in species occupancy in wetlandscapes. Our work aims to place ecological studies of patchy habitats into a proper hydrologic and climatic framework to improve the knowledge about metapopulation shifts in response to climate-driven changes in wetlandscapes. We applied the dynamic version of the SPOM (D-SPOM) framework in two wetlandscapes in the US with contrasting landscape and climate properties. Our results illustrate that explicit consideration of the temporal dimension proposed in the D-SPOM is important to interpret local- and landscape-scale patterns of habitat suitability and metapopulation occupancy. Our analyses show that spatio-temporal dynamics of patch suitability and accessibility, driven by the stochasticity in hydroclimatic forcing, influence metapopulation occupancy and the topological metrics of the emergent wetlandscape dispersal network. D-SPOM simulations also reveal that the extinction risk in dynamic wetlandscapes is exacerbated by extended dry periods when suitable habitat decreases, hence limiting successful patch colonization and exacerbating metapopulation extinction risks. The proposed framework is not restricted only to wetland studies but could also be applied to examine metapopulation dynamics in other types of patchy habitats subjected to stochastic external disturbances.
rsos.201309.pdf
publisher
openaccess
CC BY
1.11 MB
Adobe PDF
0eead22a50a7b92018ef2579ac30cee7