Publication:

Euclid preparation: LXVIII. Extracting physical parameters from galaxies with machine learning

cris.lastimport.scopus

2025-06-03T14:04:38Z

cris.virtual.author-scopus

8856476200

cris.virtual.department

SPH-ENS

cris.virtual.department

PH-SB

cris.virtual.orcid

0000-0003-0758-6510

cris.virtual.parent-organization

SB-SPH

cris.virtual.parent-organization

SB

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

IPHYS

cris.virtual.parent-organization

SB

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

166196

cris.virtual.sciperId

158695

cris.virtual.sciperId

340294

cris.virtual.unitId

11008

cris.virtual.unitId

10933

cris.virtual.unitManager

Dyson, Paul Joseph

cris.virtual.unitManager

Hébert, Cécile

cris.virtual.unitManager

Kneib, Jean-Paul

cris.virtualsource.author-scopus

3222cf52-2b7b-417b-b46f-6a33da6f6bfd

cris.virtualsource.author-scopus

a39590e6-96eb-420b-9c9b-a8c3bac40895

cris.virtualsource.author-scopus

23094ff9-7d21-41ed-86bc-987fabaf4498

cris.virtualsource.department

3222cf52-2b7b-417b-b46f-6a33da6f6bfd

cris.virtualsource.department

a39590e6-96eb-420b-9c9b-a8c3bac40895

cris.virtualsource.department

23094ff9-7d21-41ed-86bc-987fabaf4498

cris.virtualsource.orcid

3222cf52-2b7b-417b-b46f-6a33da6f6bfd

cris.virtualsource.orcid

a39590e6-96eb-420b-9c9b-a8c3bac40895

cris.virtualsource.orcid

23094ff9-7d21-41ed-86bc-987fabaf4498

cris.virtualsource.parent-organization

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.parent-organization

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.parent-organization

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.parent-organization

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.parent-organization

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

cris.virtualsource.parent-organization

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

cris.virtualsource.parent-organization

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

cris.virtualsource.parent-organization

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

cris.virtualsource.rid

3222cf52-2b7b-417b-b46f-6a33da6f6bfd

cris.virtualsource.rid

a39590e6-96eb-420b-9c9b-a8c3bac40895

cris.virtualsource.rid

23094ff9-7d21-41ed-86bc-987fabaf4498

cris.virtualsource.sciperId

3222cf52-2b7b-417b-b46f-6a33da6f6bfd

cris.virtualsource.sciperId

a39590e6-96eb-420b-9c9b-a8c3bac40895

cris.virtualsource.sciperId

23094ff9-7d21-41ed-86bc-987fabaf4498

cris.virtualsource.unitId

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.unitId

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

cris.virtualsource.unitManager

81ca2c4d-7c1c-43ad-b2f7-90075bb54133

cris.virtualsource.unitManager

ff75403a-4287-4a3d-854d-89542b31a5bd

cris.virtualsource.unitManager

af9b5fb1-5583-4bc7-9ba5-66a37a2b62cd

datacite.rights

openaccess

dc.contributor.author

Kovačić, I.

dc.contributor.author

Baes, M.

dc.contributor.author

Nersesian, A.

dc.contributor.author

Andreadis, N.

dc.contributor.author

Nemani, L.

dc.contributor.author

Abdurro'Uf, None

dc.contributor.author

Bisigello, L.

dc.contributor.author

Bolzonella, M.

dc.contributor.author

Tortora, C.

dc.contributor.author

Van Der Wel, A.

dc.contributor.author

Cavuoti, S.

dc.contributor.author

Conselice, C. J.

dc.contributor.author

Enia, A.

dc.contributor.author

Hunt, L. K.

dc.contributor.author

Iglesias-Navarro, P.

dc.contributor.author

Iodice, E.

dc.contributor.author

Knapen, J. H.

dc.contributor.author

Marleau, F. R.

dc.contributor.author

Müller, O.

dc.contributor.author

Peletier, R. F.

dc.date.accessioned

2025-04-16T08:18:50Z

dc.date.available

2025-04-16T08:18:50Z

dc.date.created

2025-04-15

dc.date.issued

2025-03-01

dc.date.modified

2025-04-16T08:18:56.200379Z

dc.description.abstract

The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free synthetic high-resolution (100 pc × 100 pc) imaging data in the Euclid photometric bands for a set of 1154 galaxies from the TNG50 cosmological simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar populations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely, stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50 follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time requirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equivalent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across large samples.

en
dc.description.sponsorship

SPH-ENS

dc.description.sponsorship

LASTRO

dc.identifier

10.1051/0004-6361/202453111

dc.identifier.doi

10.1051/0004-6361/202453111

dc.identifier.scopus

2-s2.0-105002215598

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/249300

dc.relation.issn

1432-0746

dc.relation.issn

0004-6361

dc.relation.journal

Astronomy and Astrophysics

dc.rights

true

dc.subject

Galaxies: general

dc.subject

Galaxies: photometry

dc.subject

Methods: statistical

dc.title

Euclid preparation: LXVIII. Extracting physical parameters from galaxies with machine learning

dc.type

text::journal::journal article::research article

en
dspace.entity.type

Publication

dspace.file.type

main document

epfl.peerreviewed

REVIEWED

epfl.workflow.startDateTime

2025-04-15T07:45:45.473Z

epfl.writtenAt

EPFL

local.scopus.sourceType

ar

oaire.citation.articlenumber

A284

oaire.citation.volume

695

oaire.licenseCondition

CC BY

oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

oairecerif.author.affiliation

Universiteit Gent

oairecerif.author.affiliation

Universiteit Gent

oairecerif.author.affiliation

Universiteit Gent

oairecerif.author.affiliation

Universiteit Gent

oairecerif.author.affiliation

Osservatorio Astronomico di Roma

oairecerif.author.affiliation

Johns Hopkins University

oairecerif.author.affiliation

INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna

oairecerif.author.affiliation

INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna

oairecerif.author.affiliation

Osservatorio Astronomico di Capodimonte

oairecerif.author.affiliation

Universiteit Gent

oairecerif.author.affiliation

Osservatorio Astronomico di Capodimonte

oairecerif.author.affiliation

The University of Manchester

oairecerif.author.affiliation

INAF Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna

oairecerif.author.affiliation

Osservatorio Astrofisico Di Arcetri

oairecerif.author.affiliation

Instituto Astrofisico de Canarias

oairecerif.author.affiliation

Osservatorio Astronomico di Capodimonte

oairecerif.author.affiliation

Instituto Astrofisico de Canarias

oairecerif.author.affiliation

Universität Innsbruck

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

oairecerif.author.affiliation

Kapteyn Instituut

person.identifier.scopus-author-id

58817124800

person.identifier.scopus-author-id

56261663500

person.identifier.scopus-author-id

57189593362

person.identifier.scopus-author-id

58817722400

person.identifier.scopus-author-id

9334587700

person.identifier.scopus-author-id

57202215260

person.identifier.scopus-author-id

56426999100

person.identifier.scopus-author-id

6602409206

person.identifier.scopus-author-id

55929371000

person.identifier.scopus-author-id

57203047758

person.identifier.scopus-author-id

54924573500

person.identifier.scopus-author-id

7003910265

person.identifier.scopus-author-id

57200793436

person.identifier.scopus-author-id

55538241000

person.identifier.scopus-author-id

57325670900

person.identifier.scopus-author-id

56033190100

person.identifier.scopus-author-id

7005317106

person.identifier.scopus-author-id

35494536400

person.identifier.scopus-author-id

56949991000

person.identifier.scopus-author-id

7006440295

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1051_0004-6361_202453111.pdf
Size:
7.47 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
865 B
Format:
Item-specific license agreed to upon submission
Description:

Collections