Publication:

Adaptive energy reference for machine-learning models of the electronic density of states

cris.virtual.author-scopus

23088470100

cris.virtual.department

COSMO

cris.virtual.department

COSMO

cris.virtual.department

COSMO

cris.virtual.department

COSMO

cris.virtual.orcid

0000-0002-0933-8417

cris.virtual.orcid

0000-0003-4284-0094

cris.virtual.orcid

0000-0002-6948-1602

cris.virtual.parent-organization

IMX

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.rid

C-2393-2009

cris.virtual.sciperId

331938

cris.virtual.sciperId

327804

cris.virtual.sciperId

348793

cris.virtual.sciperId

351288

cris.virtual.sciperId

235586

cris.virtual.unitId

12743

cris.virtual.unitManager

Ceriotti, Michele

cris.virtualsource.author-scopus

62269109-89ea-4770-b3cb-9ca47c3b1d4b

cris.virtualsource.author-scopus

9df9bdfa-8d08-49a5-98f2-9bc1574a0a89

cris.virtualsource.author-scopus

c27d401f-b503-4e33-89d3-9f4ca045a900

cris.virtualsource.author-scopus

634333ee-8203-44c5-afc3-a94160663e5f

cris.virtualsource.author-scopus

17498d23-5aeb-49dc-8258-7124fc2fbbcc

cris.virtualsource.department

62269109-89ea-4770-b3cb-9ca47c3b1d4b

cris.virtualsource.department

9df9bdfa-8d08-49a5-98f2-9bc1574a0a89

cris.virtualsource.department

c27d401f-b503-4e33-89d3-9f4ca045a900

cris.virtualsource.department

634333ee-8203-44c5-afc3-a94160663e5f

cris.virtualsource.department

17498d23-5aeb-49dc-8258-7124fc2fbbcc

cris.virtualsource.orcid

62269109-89ea-4770-b3cb-9ca47c3b1d4b

cris.virtualsource.orcid

9df9bdfa-8d08-49a5-98f2-9bc1574a0a89

cris.virtualsource.orcid

c27d401f-b503-4e33-89d3-9f4ca045a900

cris.virtualsource.orcid

634333ee-8203-44c5-afc3-a94160663e5f

cris.virtualsource.orcid

17498d23-5aeb-49dc-8258-7124fc2fbbcc

cris.virtualsource.parent-organization

e0958e27-867a-42ef-be82-c21f7a15df4f

cris.virtualsource.parent-organization

e0958e27-867a-42ef-be82-c21f7a15df4f

cris.virtualsource.parent-organization

e0958e27-867a-42ef-be82-c21f7a15df4f

cris.virtualsource.parent-organization

e0958e27-867a-42ef-be82-c21f7a15df4f

cris.virtualsource.rid

62269109-89ea-4770-b3cb-9ca47c3b1d4b

cris.virtualsource.rid

9df9bdfa-8d08-49a5-98f2-9bc1574a0a89

cris.virtualsource.rid

c27d401f-b503-4e33-89d3-9f4ca045a900

cris.virtualsource.rid

634333ee-8203-44c5-afc3-a94160663e5f

cris.virtualsource.rid

17498d23-5aeb-49dc-8258-7124fc2fbbcc

cris.virtualsource.sciperId

62269109-89ea-4770-b3cb-9ca47c3b1d4b

cris.virtualsource.sciperId

9df9bdfa-8d08-49a5-98f2-9bc1574a0a89

cris.virtualsource.sciperId

c27d401f-b503-4e33-89d3-9f4ca045a900

cris.virtualsource.sciperId

634333ee-8203-44c5-afc3-a94160663e5f

cris.virtualsource.sciperId

17498d23-5aeb-49dc-8258-7124fc2fbbcc

cris.virtualsource.unitId

e0958e27-867a-42ef-be82-c21f7a15df4f

cris.virtualsource.unitManager

e0958e27-867a-42ef-be82-c21f7a15df4f

datacite.rights

metadata-only

dc.contributor.author

How, Wei Bin

dc.contributor.author

Chong, Sanggyu

dc.contributor.author

Grasselli, Federico

dc.contributor.author

Huguenin-Dumittan, Kevin K.

dc.contributor.author

Ceriotti, Michele

dc.date.accessioned

2025-01-30T16:17:45Z

dc.date.available

2025-01-30T16:17:45Z

dc.date.created

2025-01-30

dc.date.issued

2025-01-01

dc.date.modified

2025-01-30T16:17:58.149544Z

dc.description.abstract

The electronic density of states (DOS) provides information regarding the distribution of electronic energy levels in a material, and can be used to approximate its optical and electronic properties and therefore guide computational materials design. Given its usefulness and relative simplicity, it has been one of the first electronic properties used as a target for machine-learning approaches going beyond interatomic potentials. A subtle but important point, well appreciated in the condensed matter community but usually overlooked in the construction of data-driven models, is that for bulk configurations the absolute energy reference of single-particle energy levels is ill-defined. Only energy differences matter, and quantities derived from the DOS are typically independent of the absolute alignment. We introduce an adaptive scheme that optimizes the energy reference of each structure as part of the training process and show that it consistently improves the quality of machine-learning models compared to traditional choices of energy reference for different classes of materials and different model architectures. On a practical level, we trace the improved performance to the ability of this self-aligning scheme to match the most prominent features in the DOS. More broadly, we believe that this paper highlights the importance of incorporating insights on the nature of the physical target into the definition of the architecture and of the appropriate figures of merit for machine-learning models, translating into better transferability and overall performance.

en
dc.description.sponsorship

COSMO

dc.identifier.doi

10.1103/PhysRevMaterials.9.013802

dc.identifier.scopus

2-s2.0-85215870338

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/246038

dc.relation.issn

2475-9953

dc.relation.journal

Physical Review Materials

dc.rights

false

dc.title

Adaptive energy reference for machine-learning models of the electronic density of states

dc.type

text::journal::journal article::research article

en
dspace.entity.type

Publication

epfl.peerreviewed

REVIEWED

epfl.workflow.startDateTime

2025-01-30T16:03:41.555Z

epfl.writtenAt

EPFL

local.scopus.sourceType

ar

oaire.citation.articlenumber

013802

oaire.citation.issue

1

oaire.citation.volume

9

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

oairecerif.author.affiliation

École Polytechnique Fédérale de Lausanne

person.identifier.scopus-author-id

57383214900

person.identifier.scopus-author-id

57197743869

person.identifier.scopus-author-id

56531789400

person.identifier.scopus-author-id

57885829200

person.identifier.scopus-author-id

23088470100

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
865 B
Format:
Item-specific license agreed to upon submission
Description:

Collections