Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Design of Oligonucleotide Arrays at Interfaces
 
research article

Design of Oligonucleotide Arrays at Interfaces

Boncheva, Mila
•
Scheibler, Lukas
•
Lincoln, Per
Show more
1999
Langmuir

The surface attachment and detection of DNA probes are essential in the design of nucleic acid-based biosensors. A new strategy for the covalent immobilization of single-stranded oligonucleotides on gold-covered planar supports is presented. Optimization of the surface d. in the resulting DNA arrays permits a high hybridization efficiency to be achieved. Surface plasmon resonance and, for the first time, ATR-FTIR spectroscopy are used to follow in situ the oligonucleotide layer formation and the subsequent complementary strand hybridization. Such well-defined, covalently immobilized oligonucleotide arrays can find application in the development of novel DNA-based sensors for mutation detection and gene mapping as well as in studies of nucleic acid-ligand interactions. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/la981702t
Web of Science ID

WOS:000081119900003

Author(s)
Boncheva, Mila
Scheibler, Lukas
Lincoln, Per
Vogel, Horst  
Aakerman, Bjoern
Date Issued

1999

Published in
Langmuir
Volume

15

Issue

13

Start page

4317

End page

4320

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCPPM  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226344
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés