Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The influence of lattice misfit on screw and edge dislocation-controlled solid solution strengthening in Mo-Ti alloys
 
research article

The influence of lattice misfit on screw and edge dislocation-controlled solid solution strengthening in Mo-Ti alloys

Winkens, Georg
•
Kauffmann, Alexander
•
Herrmann, Johannes
Show more
April 17, 2023
Communications Materials

Mo-Ti alloys form solid solutions over a wide range of compositions, with lattice misfit parameters increasing significantly with titanium content. This indicates a strong increase in the critical stress for edge dislocation motion. Here, we probe the transition from screw to edge dislocation-dominated strengthening in Mo-Ti solid solutions with titanium content up to 80 at%. The alloys were scale-bridging characterized to isolate the impact of substitutional solid solution strengthening. Mechanical testing yielded no significant influence of grain boundaries or grain orientation. The results were corrected for the strengthening by unavoidable interstitial oxygen. Modelling of screw and edge dislocation-controlled solid solution strengthening was applied to the results to evaluate the contributions of both dislocation types. The analysis reveals that screw dislocation motion controls the strength in allows with less than 40 at% titanium, while edge dislocation motion provides comparable strength for 60-80 at% titanium. These results in a system of reduced chemical complexity support the recent investigations of edge dislocation-controlled strengthening found in high-entropy alloys.

In body-centered cubic alloys, screw dislocations are considered to be strength-controlling. Here, a systematic investigation of Mo-Ti alloys with varying lattice misfit reveals a transition from screw to edge dislocation-controlled strength.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s43246-023-00353-8.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.03 MB

Format

Adobe PDF

Checksum (MD5)

dd6a3220f23fff735e597e88367848e8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés