Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ising Model: Local Spin Correlations and Conformal Invariance
 
research article

Ising Model: Local Spin Correlations and Conformal Invariance

Gheissari, Reza
•
Hongler, Clement  
•
Park, S. C.
May 1, 2019
Communications in Mathematical Physics

We study the 2-dimensional Ising model at critical temperature on a simply connected subset of the square grid Z2. The scaling limit of the critical Ising model is conjectured to be described by Conformal Field Theory; in particular, there is expected to be a precise correspondence between local lattice fields of the Ising model and the local fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring at the origin), explicitly obtain their infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We formulate these probabilities in terms of discrete fermionic observables, enabling the study of their scaling limits. This generalizes results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis, [Hon10]), Hongler and Smirnov (Acta Math 211(2):191-225, [HoSm13]), Chelkak, Hongler, and Izyurov (Ann. Math. 181(3), 1087-1138, [CHI15]) to one-point functions of any local spin correlations. We introduce a collection of tools which allow one to exactly and explicitly translate any spin pattern probability (and hence any lattice local field correlation) in terms of discrete complex analysis quantities. The proof requires working with multipoint lattice spinors with monodromy (including construction of explicit formulae in the full plane), and refined analysis near their source points to prove convergence to the appropriate continuous conformally covariant functions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00220-019-03312-y.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.05 MB

Format

Adobe PDF

Checksum (MD5)

ea558ceb978ac88860f4ca7ac16eba03

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés