Publication:

A complex networks approach to traffic flow theory: measures and models

cris.lastimport.scopus

2024-08-07T13:00:22Z

cris.legacyId

280227

cris.virtual.author-scopus

23987569600

cris.virtual.department

LUTS

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

ENAC

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

IIC

cris.virtual.parent-organization

ENAC

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

EDOC

cris.virtual.parent-organization

ETU

cris.virtual.parent-organization

EPFL

cris.virtual.rid

EYD-7115-2022

cris.virtual.sciperId

196675

cris.virtual.sciperId

259847

cris.virtual.unitId

12124

cris.virtual.unitManager

Geroliminis, Nikolaos

cris.virtualsource.author-scopus

f07c8856-4cde-4508-8f8b-6f999a8cbaa5

cris.virtualsource.author-scopus

44699e5f-304d-4154-90a9-c1b0c030e41a

cris.virtualsource.department

f07c8856-4cde-4508-8f8b-6f999a8cbaa5

cris.virtualsource.department

44699e5f-304d-4154-90a9-c1b0c030e41a

cris.virtualsource.orcid

f07c8856-4cde-4508-8f8b-6f999a8cbaa5

cris.virtualsource.orcid

44699e5f-304d-4154-90a9-c1b0c030e41a

cris.virtualsource.parent-organization

95372c6b-7d45-432e-a84e-660c9fa54e05

cris.virtualsource.parent-organization

95372c6b-7d45-432e-a84e-660c9fa54e05

cris.virtualsource.parent-organization

13639a83-9cda-452d-b5af-a682e246ed42

cris.virtualsource.parent-organization

13639a83-9cda-452d-b5af-a682e246ed42

cris.virtualsource.parent-organization

13639a83-9cda-452d-b5af-a682e246ed42

cris.virtualsource.parent-organization

796227d5-33c0-4b5b-999e-5ab40b2c6875

cris.virtualsource.parent-organization

796227d5-33c0-4b5b-999e-5ab40b2c6875

cris.virtualsource.parent-organization

796227d5-33c0-4b5b-999e-5ab40b2c6875

cris.virtualsource.parent-organization

796227d5-33c0-4b5b-999e-5ab40b2c6875

cris.virtualsource.parent-organization

44e74750-677a-460c-b67b-1118363b6a5b

cris.virtualsource.parent-organization

44e74750-677a-460c-b67b-1118363b6a5b

cris.virtualsource.parent-organization

44e74750-677a-460c-b67b-1118363b6a5b

cris.virtualsource.parent-organization

44e74750-677a-460c-b67b-1118363b6a5b

cris.virtualsource.rid

f07c8856-4cde-4508-8f8b-6f999a8cbaa5

cris.virtualsource.rid

44699e5f-304d-4154-90a9-c1b0c030e41a

cris.virtualsource.sciperId

f07c8856-4cde-4508-8f8b-6f999a8cbaa5

cris.virtualsource.sciperId

44699e5f-304d-4154-90a9-c1b0c030e41a

cris.virtualsource.unitId

796227d5-33c0-4b5b-999e-5ab40b2c6875

cris.virtualsource.unitManager

796227d5-33c0-4b5b-999e-5ab40b2c6875

datacite.rights

restricted

dc.contributor.advisor

Geroliminis, Nikolaos

dc.contributor.author

Bellocchi, Leonardo

dc.date.accepted

2020

dc.date.accessioned

2020-09-25T09:15:04

dc.date.created

2020-09-25

dc.date.issued

2020

dc.date.modified

2025-02-19T13:32:13.436906Z

dc.description.abstract

In this thesis, we developed a research direction that combines the theoretical concepts of complex networks with practical needs and applications in the field of transportation engineering. As a first objective we analyzed the phenomenon of congestion propagation in a city trying to synthesize - hence reproduce - dynamical systems of complex nature in a well-established and elegant mathematical-physical structure. With this perspective, we identified in the reaction-diffusion-like system the most natural way to describe how congestion spreads in the road networks according to elementary diffusion mechanics (linear) and self-enhancement of traffic jam (non-linear). This analysis showed that models with a small number of parameters can reproduce dynamic network patterns without the need for very detailed and accurate input data. Another topic we dealt with was to indicate centrality measures expressively defined for congested road networks. Inspired by classical complex networks theory, we defined more suitable and exploitable indices in the field of transport and urban mobility that consider in a dynamic framework both the network topology and the spatial distribution and magnitude of congestion. For this scope, we proposed the definition of dynamical efficiency for single and multi-layer networks. Dynamical efficiency responds adequately to the need for classification of urban areas based on their accessibility and on the influence that traffic has, region-par-region, on the average travel time of passengers. This measure combines and exploits local information (average road speeds, functional type) with the complex structure of the road network and the opportunity for convenient alternative routes. Furthermore, by generalizing the dynamical efficiency definition in a multimodal environment, we are able to identify the most attractive intermodal exchange stations (for example, bus-metro, private car-public transport) and estimate their optimal capacity service. This opens up the workspace for innumerable engineering applications and accurate evaluations of the impact of high traffic demand in each transport system. Among the same lines, another chapter of this thesis concerns a measure of simplicity for paths and allows us to study an extended database of real trajectories and classify the drivers according to their priority path choice factors. Finally, we studied the congestion propagation under a topological perspective as an aggregation of connected components of congested links. By analyzing the distribution of their sizes and the average merging rate we are be able to (i) point out important premonitory signals that anticipate imminent traffic jam (namely morning and evening peak-hours), (ii) to visualize the most critical bottlenecks and (iii) to better understand the causal inference between components of congestion and the average network speed.

dc.description.sponsorship

LUTS

dc.identifier.doi

10.5075/epfl-thesis-7434

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/171916

dc.language.iso

en

dc.publisher

EPFL

dc.publisher.place

Lausanne

dc.relation

https://infoscience.epfl.ch/record/280227/files/EPFL_TH7434.pdf

dc.size

133

dc.subject

Complex networks

dc.subject

congestion propagation

dc.subject

multimodal transportation systems

dc.subject

traffic models

dc.subject

networks analysis

dc.subject

traffic patterns

dc.subject

driver behaviour

dc.title

A complex networks approach to traffic flow theory: measures and models

dc.type

thesis::doctoral thesis

dspace.entity.type

Publication

dspace.file.type

n/a

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:280227

epfl.legacy.itemtype

Theses

epfl.legacy.submissionform

THESIS

epfl.oai.currentset

ENAC

epfl.oai.currentset

fulltext

epfl.oai.currentset

DOI

epfl.oai.currentset

thesis-public

epfl.oai.currentset

thesis

epfl.oai.currentset

thesis-bn

epfl.oai.currentset

OpenAIREv4

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.thesis.doctoralSchool

EDCE

epfl.thesis.faculty

ENAC

epfl.thesis.institute

INTER

epfl.thesis.jury

Prof. Dimitrios Lignos (président) ; Prof. Nikolaos Geroliminis (directeur de thèse) ; Prof. Patrick Thiran, Prof. Vito Latora, Prof. Ludovic LECLERCQ (rapporteurs)

epfl.thesis.number

7434

epfl.thesis.originalUnit

LUTS

epfl.thesis.publicDefenseYear

2020-10-02

epfl.writtenAt

EPFL

oaire.licenseCondition

Copyright

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EPFL_TH7434.pdf
Size:
7.13 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections