Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Propagation-Loss Characterization for Livestock Implantables at (433,868,1400) MHz
 
research article

Propagation-Loss Characterization for Livestock Implantables at (433,868,1400) MHz

Benaissa, Said
•
Verloock, Leen
•
Nikolayev, Denys  
Show more
August 1, 2021
Ieee Transactions On Antennas And Propagation

Automated systems based on wearable sensors for livestock monitoring are becoming increasingly popular. Specifically, wireless in-body sensors could yield relevant data, such as ruminal temperature. The collection of such data requires an accurate characterization of the in-to-out body wireless channel between the in-body sensor and the gateway. The aim of this study is to experimentally characterize the in-to-out-body propagation loss for cows and horses at 433, 868, and 1400 MHz. Measurements were conducted in vivo on five different fistulated cows and five horse cadavers using specialized robust in-body capsule antennas inside the animals' abdomen. Next, the in-body antenna gain was deembedded from the wireless channel, and the in-to-out body propagation loss was obtained as the difference between measured unobstructed line-of-sight path losses and in-to-out-body path losses. The measurements showed a body propagation loss of (mean +/- standard deviation) 30.8 +/- 4.1 dB, 44.5 +/- 4.8 dB, and 54.2 +/- 4.7 dB for cows at 433, 868, and 1400 MHz, respectively. For horses, the body propagation losses were 23.2 +/- 3.8 dB, 31.0 +/- 4.7 dB, and 44.4 +/- 3.2 dB at 433, 868, and 1400 MHz, respectively. These results are important to determine the wireless range of WBANs to optimize the network topology and estimate the associated network cost for large-scale monitoring systems.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TAP.2021.3060501
Web of Science ID

WOS:000681275800100

Author(s)
Benaissa, Said
Verloock, Leen
Nikolayev, Denys  
Deruyck, Margot
Vermeeren, Gunter
Martens, Luc
Govaere, Jan
Tuyttens, Frank
Sonck, Bart
Plets, David
Show more
Date Issued

2021-08-01

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published in
Ieee Transactions On Antennas And Propagation
Volume

69

Issue

8

Start page

5166

End page

5170

Subjects

Engineering, Electrical & Electronic

•

Telecommunications

•

Engineering

•

antenna measurements

•

cows

•

horses

•

animals

•

antennas

•

loss measurement

•

wireless communication

•

body loss

•

capsule antenna

•

cow

•

horse

•

in-body

•

in-to-out-body path loss

•

internet-of-animals

•

link budget

•

propagation

•

radio channel

•

body path loss

•

dairy-cows

•

wireless

•

model

•

sensor

•

channel

•

design

•

rumen

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SCI-STI-AS  
Available on Infoscience
August 28, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/181004
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés