Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nonstandard Errors
 
research article

Nonstandard Errors

Menkveld, Albert J.
•
Dreber, Anna
•
Holzmeister, Felix
Show more
April 17, 2024
Journal Of Finance

In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

The Journal of Finance - 2024 - MENKVELD - Nonstandard Errors.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.17 MB

Format

Adobe PDF

Checksum (MD5)

06e3e9d4791a6a46e662239e7dcb78c2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés