Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Low-Power Microwave HEMT $LC$ Oscillator Operating Down to 1.4 K
 
research article

A Low-Power Microwave HEMT $LC$ Oscillator Operating Down to 1.4 K

Matheoud, Alessandro V.  
•
Sahin Solmaz, Nergiz  
•
Boero, Giovanni  
June 3, 2019
IEEE Transactions on Microwave Theory and Techniques

High-electron-mobility transistors (HEMTs) based on 2-D electron gases (2DEGs) in III-V heterostructures have superior mobility compared with the transistors of silicon-based complementary metal-oxide-semiconductor technologies. The large mobility makes them attractive not only for low-noise and high-power microwave applications but also for low-power applications down to deep cryogenic temperatures. Here, we report on the design and characterization of a low-power HEMT LC Colpitts oscillator operating at 11 GHz whose minimum power consumption is 90 μW at 300 K and 4 μW at 1.4 K. The fully integrated oscillator is based on a single HEMT transistor having a gate length of 70 nm and realized using a 2DEG in In 0.7 Ga 0.3 As. The power consumption of the realized oscillator is the lowest reported in the literature so far for an LC oscillator operating in the same frequency range. In order to investigate the behavior of the oscillator, we also performed a detailed characterization of a stand-alone HEMT transistor from 1.4 to 300 K with a static magnetic field from 0 to 8 T. From the extracted values of the transistor parameters, we estimate and compare the minimum power necessary to start-up oscillations for two different Colpitts topologies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

08728178.pdf

Access type

openaccess

Size

2.83 MB

Format

Adobe PDF

Checksum (MD5)

f12ecd0e7efa619b52eeaeb192786769

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés