Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Novel aspects of plasma control in ITER
 
research article

Novel aspects of plasma control in ITER

Humphreys, D.
•
Ambrosino, G.
•
De Vries, P.
Show more
2015
Physics Of Plasmas

ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e. g., current profile regulation, tearing mode (TM) suppression), control mathematics (e. g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e. g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER. (C) 2015 AIP Publishing LLC.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.4907901
Web of Science ID

WOS:000350552000015

Author(s)
Humphreys, D.
Ambrosino, G.
De Vries, P.
Felici, F.
Kim, S. H.
Jackson, G.
Kallenbach, A.
Kolemen, E.
Lister, J.
Moreau, D.
Show more
Date Issued

2015

Publisher

Amer Inst Physics

Published in
Physics Of Plasmas
Volume

22

Issue

2

Article Number

021806

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 13, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/113241
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés