Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Objective Bayesian Model Selection
 
report

Objective Bayesian Model Selection

Lugrin, Thomas  
2015

Frequentist and Bayesian approaches to statistics have long been seen as incompatible, but recent work has been done to try and unify them (Bayarri and Berger, 2004; Efron, 2005). Empirical Bayes, approximate Bayesian analysis, and the matching prior approach are examples of methods where prior elicitation is driven by a frequentist interpretation of the data. In this report, we review some standard frequentist and Bayesian model selection techniques and describe how objective Bayes theory can help in this decision-oriented framework, typically by enabling consideration of uncertainty in the model-building process. Objective Bayes mehtods are then used and compared with standard model selection methods on data from the financial sector in Switzerland, Greece, and the United States during 1999 to 2013; results show broad agreement between the methods, but conclusions are less clear-cut in the objective Bayes framework.

  • Details
  • Metrics
Type
report
Author(s)
Lugrin, Thomas  
Date Issued

2015

Subjects

Bank Index

•

Econometrics

•

g prior

•

Inclusion probability

•

Objective Bayes

•

Model selection

Written at

EPFL

EPFL units
STAT  
Available on Infoscience
December 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/121862
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés