Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
 
research article

ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data

Gardeux, Vincent
•
David, Fabrice P. A.
•
Shajkofci, Adrian
Show more
2017
Bioinformatics

Motivation: Single-cell RNA-sequencing (scRNA-seq) allows whole transcriptome profiling of thousands of individual cells, enabling the molecular exploration of tissues at the cellular level. Such analytical capacity is of great interest to many research groups in the world, yet these groups often lack the expertise to handle complex scRNA-seq datasets. Results: We developed a fully integrated, web-based platform aimed at the complete analysis of scRNA-seq data post genome alignment: from the parsing, filtering and normalization of the input count data files, to the visual representation of the data, identification of cell clusters, differentially expressed genes (including cluster-specific marker genes), and functional gene set enrichment. This Automated Single-cell Analysis Pipeline (ASAP) combines a wide range of commonly used algorithms with sophisticated visualization tools. Compared with existing scRNA-seq analysis platforms, researchers (including those lacking computational expertise) are able to interact with the data in a straightforward fashion and in real time. Furthermore, given the overlap between scRNAseq and bulk RNA-seq analysis workflows, ASAP should conceptually be broadly applicable to any RNA-seq dataset. As a validation, we demonstrate how we can use ASAP to simply reproduce the results from a single-cell study of 91 mouse cells involving five distinct cell types.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Publication_Bioinformatics (Gardeux et al).pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

Size

195.2 KB

Format

Adobe PDF

Checksum (MD5)

65fe16a0d4f12b50858f121cd1b215f5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés