Publication: REST: Efficient and Accelerated EEG Seizure Analysis through Residual
State Updates
REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates
cris.virtual.author-scopus | 6506127004 | |
cris.virtual.author-scopus | 55516939100 | |
cris.virtual.department | LIONS | |
cris.virtual.department | LIONS | |
cris.virtual.department | INL | |
cris.virtual.department | INL | |
cris.virtual.orcid | 0000-0002-5004-201X | |
cris.virtual.parent-organization | IEM | |
cris.virtual.parent-organization | STI | |
cris.virtual.parent-organization | EPFL | |
cris.virtual.parent-organization | IEM | |
cris.virtual.parent-organization | STI | |
cris.virtual.parent-organization | EPFL | |
cris.virtual.sciperId | 199128 | |
cris.virtual.sciperId | 332022 | |
cris.virtual.sciperId | 347729 | |
cris.virtual.sciperId | 200854 | |
cris.virtual.unitId | 13744 | |
cris.virtual.unitId | 12179 | |
cris.virtual.unitManager | Shoaran, Mahsa | |
cris.virtual.unitManager | Empain, Jessica | |
cris.virtual.unitManager | Cevher, Volkan | |
cris.virtualsource.author-scopus | d54e25cd-d752-44a4-959f-ee004d8a1f05 | |
cris.virtualsource.author-scopus | c0f5bbdd-5288-4fb8-b7f8-484d446db3f1 | |
cris.virtualsource.author-scopus | 75f5e43f-a85c-4ce4-bb7b-0bc322f06715 | |
cris.virtualsource.author-scopus | ca1bfc47-1697-4743-9623-766006ea6d2f | |
cris.virtualsource.department | d54e25cd-d752-44a4-959f-ee004d8a1f05 | |
cris.virtualsource.department | c0f5bbdd-5288-4fb8-b7f8-484d446db3f1 | |
cris.virtualsource.department | 75f5e43f-a85c-4ce4-bb7b-0bc322f06715 | |
cris.virtualsource.department | ca1bfc47-1697-4743-9623-766006ea6d2f | |
cris.virtualsource.orcid | d54e25cd-d752-44a4-959f-ee004d8a1f05 | |
cris.virtualsource.orcid | c0f5bbdd-5288-4fb8-b7f8-484d446db3f1 | |
cris.virtualsource.orcid | 75f5e43f-a85c-4ce4-bb7b-0bc322f06715 | |
cris.virtualsource.orcid | ca1bfc47-1697-4743-9623-766006ea6d2f | |
cris.virtualsource.parent-organization | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.parent-organization | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.parent-organization | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.parent-organization | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.parent-organization | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
cris.virtualsource.parent-organization | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
cris.virtualsource.parent-organization | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
cris.virtualsource.parent-organization | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
cris.virtualsource.rid | d54e25cd-d752-44a4-959f-ee004d8a1f05 | |
cris.virtualsource.rid | c0f5bbdd-5288-4fb8-b7f8-484d446db3f1 | |
cris.virtualsource.rid | 75f5e43f-a85c-4ce4-bb7b-0bc322f06715 | |
cris.virtualsource.rid | ca1bfc47-1697-4743-9623-766006ea6d2f | |
cris.virtualsource.sciperId | d54e25cd-d752-44a4-959f-ee004d8a1f05 | |
cris.virtualsource.sciperId | c0f5bbdd-5288-4fb8-b7f8-484d446db3f1 | |
cris.virtualsource.sciperId | 75f5e43f-a85c-4ce4-bb7b-0bc322f06715 | |
cris.virtualsource.sciperId | ca1bfc47-1697-4743-9623-766006ea6d2f | |
cris.virtualsource.unitId | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.unitId | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
cris.virtualsource.unitManager | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.unitManager | dcde273d-ccdd-40d9-8864-c08689ead15d | |
cris.virtualsource.unitManager | 6bf23875-df09-4cb4-a2c5-26f5e4577e0a | |
datacite.rights | metadata-only | |
dc.contributor.author | Afzal, Arshia | |
dc.contributor.author | Chrysos, Grigorios | |
dc.contributor.author | Cevher, Volkan | |
dc.contributor.author | Shoaran, Mahsa | |
dc.date.accessioned | 2024-11-14T11:54:43Z | |
dc.date.available | 2024-11-14T11:54:43Z | |
dc.date.created | 2024-11-14 | |
dc.date.issued | 2024-06-03 | |
dc.date.modified | 2025-03-03T10:49:51.567015Z | |
dc.description.abstract | EEG-based seizure detection models face challenges in terms of inference speed and memory efficiency, limiting their real-time implementation in clinical devices. This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis in applications such as epileptic seizure detection. By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data. Our model demonstrates high accuracy in both seizure detection and classification tasks. Notably, REST achieves a remarkable 9-fold acceleration in inference speed compared to state-of-the-art models, while simultaneously demanding substantially less memory than the smallest model employed for this task. These attributes position REST as a promising candidate for real-time implementation in clinical devices, such as Responsive Neurostimulation or seizure alert systems. | en |
dc.description.sponsorship | LIONS | |
dc.description.sponsorship | INL | |
dc.identifier.arxiv | 2406.16906v1 | |
dc.identifier.uri | ||
dc.language.iso | en | |
dc.publisher.place | Vienna, Astria | |
dc.relation.conference | 41st International Conference on Machine Learning (ICML 2024) | |
dc.relation.ispartofseries | 235 | |
dc.subject | Electrical Engineering and Systems Science - Signal Processing | |
dc.subject | Computer Science - Artificial Intelligence | |
dc.subject | Computer Science - Learning | |
dc.subject | ML-AI | |
dc.title | REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates | |
dc.type | text::conference output::conference proceedings::conference paper | |
dspace.entity.type | Publication | |
epfl.peerreviewed | REVIEWED | |
epfl.relation.conferenceType | conference | |
epfl.workflow.startDateTime | 2024-11-14T11:45:26.634Z | |
epfl.writtenAt | EPFL | |
local.arxiv.sourceCategory | eess.SP | |
local.arxiv.sourceCategory | ||
local.arxiv.sourceCategory | cs.LG | |
oaire.citation.conferenceDate | 2024-07-21 | |
oaire.citation.conferencePlace | Vienna, Austria | |
oairecerif.author.affiliation | EPFL | |
oairecerif.author.affiliation | EPFL | |
oairecerif.author.affiliation | EPFL | |
oairecerif.author.affiliation | EPFL |
Files
License bundle
- Name:
- license.txt
- Size:
- 865 B
- Format:
- Item-specific license agreed to upon submission
- Description: