Publication:

REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates

cris.virtual.author-scopus

6506127004

cris.virtual.author-scopus

55516939100

cris.virtual.department

LIONS

cris.virtual.department

LIONS

cris.virtual.department

INL

cris.virtual.department

INL

cris.virtual.orcid

0000-0002-5004-201X

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

199128

cris.virtual.sciperId

332022

cris.virtual.sciperId

347729

cris.virtual.sciperId

200854

cris.virtual.unitId

13744

cris.virtual.unitId

12179

cris.virtual.unitManager

Shoaran, Mahsa

cris.virtual.unitManager

Empain, Jessica

cris.virtual.unitManager

Cevher, Volkan

cris.virtualsource.author-scopus

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.author-scopus

c0f5bbdd-5288-4fb8-b7f8-484d446db3f1

cris.virtualsource.author-scopus

75f5e43f-a85c-4ce4-bb7b-0bc322f06715

cris.virtualsource.author-scopus

ca1bfc47-1697-4743-9623-766006ea6d2f

cris.virtualsource.department

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.department

c0f5bbdd-5288-4fb8-b7f8-484d446db3f1

cris.virtualsource.department

75f5e43f-a85c-4ce4-bb7b-0bc322f06715

cris.virtualsource.department

ca1bfc47-1697-4743-9623-766006ea6d2f

cris.virtualsource.orcid

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.orcid

c0f5bbdd-5288-4fb8-b7f8-484d446db3f1

cris.virtualsource.orcid

75f5e43f-a85c-4ce4-bb7b-0bc322f06715

cris.virtualsource.orcid

ca1bfc47-1697-4743-9623-766006ea6d2f

cris.virtualsource.parent-organization

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.parent-organization

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.parent-organization

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.parent-organization

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.rid

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.rid

c0f5bbdd-5288-4fb8-b7f8-484d446db3f1

cris.virtualsource.rid

75f5e43f-a85c-4ce4-bb7b-0bc322f06715

cris.virtualsource.rid

ca1bfc47-1697-4743-9623-766006ea6d2f

cris.virtualsource.sciperId

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.sciperId

c0f5bbdd-5288-4fb8-b7f8-484d446db3f1

cris.virtualsource.sciperId

75f5e43f-a85c-4ce4-bb7b-0bc322f06715

cris.virtualsource.sciperId

ca1bfc47-1697-4743-9623-766006ea6d2f

cris.virtualsource.unitId

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.unitId

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.unitManager

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.unitManager

dcde273d-ccdd-40d9-8864-c08689ead15d

cris.virtualsource.unitManager

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

datacite.rights

metadata-only

dc.contributor.author

Afzal, Arshia

dc.contributor.author

Chrysos, Grigorios

dc.contributor.author

Cevher, Volkan

dc.contributor.author

Shoaran, Mahsa

dc.date.accessioned

2024-11-14T11:54:43Z

dc.date.available

2024-11-14T11:54:43Z

dc.date.created

2024-11-14

dc.date.issued

2024-06-03

dc.date.modified

2025-03-03T10:49:51.567015Z

dc.description.abstract

EEG-based seizure detection models face challenges in terms of inference speed and memory efficiency, limiting their real-time implementation in clinical devices. This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis in applications such as epileptic seizure detection. By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data. Our model demonstrates high accuracy in both seizure detection and classification tasks. Notably, REST achieves a remarkable 9-fold acceleration in inference speed compared to state-of-the-art models, while simultaneously demanding substantially less memory than the smallest model employed for this task. These attributes position REST as a promising candidate for real-time implementation in clinical devices, such as Responsive Neurostimulation or seizure alert systems.

en
dc.description.sponsorship

LIONS

dc.description.sponsorship

INL

dc.identifier.arxiv

2406.16906v1

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/242027

dc.language.iso

en

dc.publisher.place

Vienna, Astria

dc.relation.conference

41st International Conference on Machine Learning (ICML 2024)

dc.relation.ispartofseries

235

dc.subject

Electrical Engineering and Systems Science - Signal Processing

dc.subject

Computer Science - Artificial Intelligence

dc.subject

Computer Science - Learning

dc.subject

ML-AI

dc.title

REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates

dc.type

text::conference output::conference proceedings::conference paper

dspace.entity.type

Publication

epfl.peerreviewed

REVIEWED

epfl.relation.conferenceType

conference

epfl.workflow.startDateTime

2024-11-14T11:45:26.634Z

epfl.writtenAt

EPFL

local.arxiv.sourceCategory

eess.SP

local.arxiv.sourceCategory

cs.AI

local.arxiv.sourceCategory

cs.LG

oaire.citation.conferenceDate

2024-07-21

oaire.citation.conferencePlace

Vienna, Austria

oairecerif.author.affiliation

EPFL

oairecerif.author.affiliation

EPFL

oairecerif.author.affiliation

EPFL

oairecerif.author.affiliation

EPFL

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
865 B
Format:
Item-specific license agreed to upon submission
Description: