Publication:

Lipschitz constant estimation for Neural Networks via sparse polynomial optimization

cris.legacyId

273919

cris.virtual.author-scopus

6506127004

cris.virtual.department

LIONS

cris.virtual.department

SDSC-GE

cris.virtual.orcid

0000-0002-5004-201X

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

199128

cris.virtual.sciperId

223583

cris.virtual.sciperId

279734

cris.virtual.unitId

12179

cris.virtual.unitManager

Cevher, Volkan

cris.virtual.unitManager

Verscheure, Olivier

cris.virtualsource.author-scopus

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.author-scopus

d410f291-d118-41bf-8cd4-0972e9cf2e73

cris.virtualsource.author-scopus

007ddbb2-a249-4365-97bd-e78a2894972a

cris.virtualsource.department

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.department

d410f291-d118-41bf-8cd4-0972e9cf2e73

cris.virtualsource.department

007ddbb2-a249-4365-97bd-e78a2894972a

cris.virtualsource.orcid

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.orcid

d410f291-d118-41bf-8cd4-0972e9cf2e73

cris.virtualsource.orcid

007ddbb2-a249-4365-97bd-e78a2894972a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.parent-organization

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.rid

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.rid

d410f291-d118-41bf-8cd4-0972e9cf2e73

cris.virtualsource.rid

007ddbb2-a249-4365-97bd-e78a2894972a

cris.virtualsource.sciperId

d54e25cd-d752-44a4-959f-ee004d8a1f05

cris.virtualsource.sciperId

d410f291-d118-41bf-8cd4-0972e9cf2e73

cris.virtualsource.sciperId

007ddbb2-a249-4365-97bd-e78a2894972a

cris.virtualsource.unitId

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.unitManager

6bf23875-df09-4cb4-a2c5-26f5e4577e0a

cris.virtualsource.unitManager

6d7cce13-173e-4fb9-929d-96f16f77a10d

datacite.rights

openaccess

dc.contributor.author

Latorre, Fabian

dc.contributor.author

Rolland, Paul Thierry Yves

dc.contributor.author

Cevher, Volkan

dc.date.accessioned

2020-01-20T14:03:48

dc.date.available

2020-01-20T14:03:48

dc.date.created

2020-01-20

dc.date.issued

2020-04-26

dc.date.modified

2025-03-03T10:49:50.925993Z

dc.description.abstract

We introduce LiPopt, a polynomial optimization framework for computing increasingly tighter upper bounds on the Lipschitz constant of neural networks. The underlying optimization problems boil down to either linear (LP) or semidefinite (SDP) programming. We show how to use the sparse connectivity of a network, to significantly reduce the complexity of computation. This is specially useful for convolutional as well as pruned neural networks. We conduct experiments on networks with random weights as well as networks trained on MNIST, showing that in the particular case of the `1-Lipschitz constant, our approach yields superior estimates, compared to baselines available in the literature.

dc.description.sponsorship

LIONS

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/164691

dc.relation

https://infoscience.epfl.ch/record/273919/files/lips_poly.pdf

dc.relation.conference

8th International Conference on Learning Representations

dc.size

16

dc.subject

ML-AI

dc.title

Lipschitz constant estimation for Neural Networks via sparse polynomial optimization

dc.type

text::conference output::conference paper not in proceedings

dspace.entity.type

Publication

dspace.file.type

Postprint

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:273919

epfl.curator.email

manon.velasco@epfl.ch

epfl.lastmodified.email

paul.rolland@epfl.ch

epfl.legacy.itemtype

Conference Papers

epfl.legacy.submissionform

CONF

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

fulltext

epfl.oai.currentset

STI

epfl.oai.currentset

conf

epfl.peerreviewed

REVIEWED

epfl.url

https://iclr.cc/Conferences/2020

epfl.url

https://openreview.net/group?id=ICLR.cc/2020/Conference

epfl.writtenAt

EPFL

oaire.citation.conferenceDate

April 26-30, 2020

oaire.citation.conferencePlace

Addis Ababa, ETHIOPIA

oaire.licenseCondition

Copyright

oaire.version

http://purl.org/coar/version/c_ab4af688f83e57aa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
lips_poly.pdf
Size:
627.79 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: