Publication:

Smart pooling: AI-powered COVID-19 informative group testing

cris.lastimport.scopus

2025-06-03T16:22:05Z

cris.legacyId

293901

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

308826

cris.virtual.unitId

12209

cris.virtual.unitManager

Moser, Christophe

cris.virtualsource.author-scopus

b7dfcb82-9d1a-4c99-8403-c2f68ce3880f

cris.virtualsource.department

b7dfcb82-9d1a-4c99-8403-c2f68ce3880f

cris.virtualsource.orcid

b7dfcb82-9d1a-4c99-8403-c2f68ce3880f

cris.virtualsource.parent-organization

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

cris.virtualsource.parent-organization

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

cris.virtualsource.parent-organization

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

cris.virtualsource.parent-organization

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

cris.virtualsource.rid

b7dfcb82-9d1a-4c99-8403-c2f68ce3880f

cris.virtualsource.sciperId

b7dfcb82-9d1a-4c99-8403-c2f68ce3880f

cris.virtualsource.unitId

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

cris.virtualsource.unitManager

aa3ee822-af67-4bff-af3f-cd39cf4d3f42

datacite.rights

openaccess

dc.contributor.author

Escobar, Maria

dc.contributor.author

Jeanneret, Guillaume

dc.contributor.author

Bravo-Sanchez, Laura

dc.contributor.author

Castillo, Angela

dc.contributor.author

Gomez, Catalina

dc.contributor.author

Valderrama, Diego

dc.contributor.author

Roa, Mafe

dc.contributor.author

Martinez, Julian

dc.contributor.author

Madrid-Wolff, Jorge

dc.contributor.author

Cepeda, Martha

dc.contributor.author

Guevara-Suarez, Marcela

dc.contributor.author

Sarmiento, Olga L.

dc.contributor.author

Medaglia, Andres L.

dc.contributor.author

Forero-Shelton, Manu

dc.contributor.author

Velasco, Mauricio

dc.contributor.author

Pedraza, Juan M.

dc.contributor.author

Laajaj, Rachid

dc.contributor.author

Restrepo, Silvia

dc.contributor.author

Arbelaez, Pablo

dc.date.accessioned

2022-05-09T02:30:10

dc.date.available

2022-05-09T02:30:10

dc.date.created

2022-05-09

dc.date.issued

2022-04-20

dc.date.modified

2025-01-30T08:09:25.629041Z

dc.description.abstract

Massive molecular testing for COVID-19 has been pointed out as fundamental to moderate the spread of the pandemic. Pooling methods can enhance testing efficiency, but they are viable only at low incidences of the disease. We propose Smart Pooling, a machine learning method that uses clinical and sociodemographic data from patients to increase the efficiency of informed Dorfman testing for COVID-19 by arranging samples into all-negative pools. To do this, we ran an automated method to train numerous machine learning models on a retrospective dataset from more than 8000 patients tested for SARS-CoV-2 from April to July 2020 in Bogota, Colombia. We estimated the efficiency gains of using the predictor to support Dorfman testing by simulating the outcome of tests. We also computed the attainable efficiency gains of non-adaptive pooling schemes mathematically. Moreover, we measured the false-negative error rates in detecting the ORF1ab and N genes of the virus in RT-qPCR dilutions. Finally, we presented the efficiency gains of using our proposed pooling scheme on proof-of-concept pooled tests. We believe Smart Pooling will be efficient for optimizing massive testing of SARS-CoV-2.

dc.description.sponsorship

LAPD

dc.identifier.doi

10.1038/s41598-022-10128-9

dc.identifier.isi

WOS:000784990500009

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/187690

dc.publisher

Nature Portfolio

dc.publisher.place

Berlin

dc.relation

https://infoscience.epfl.ch/record/293901/files/s41598-022-10128-9.pdf

dc.relation.issn

2045-2322

dc.relation.journal

Scientific Reports

dc.source

WoS

dc.subject

Multidisciplinary Sciences

dc.subject

Science & Technology - Other Topics

dc.subject

strategy

dc.title

Smart pooling: AI-powered COVID-19 informative group testing

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.file.type

Publisher's version

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:293901

epfl.curator.email

jorge.rodriguesdematos@epfl.ch

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

fulltext

epfl.oai.currentset

STI

epfl.oai.currentset

article

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.articlenumber

6519

oaire.citation.issue

1

oaire.citation.volume

12

oaire.licenseCondition

CC BY

oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-022-10128-9.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections