Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Extremal Eigenvalues Of The Dirichlet Biharmonic Operator On Rectangles
 
research article

Extremal Eigenvalues Of The Dirichlet Biharmonic Operator On Rectangles

Buoso, D.  
•
Freitas, P.
March 1, 2020
Proceedings Of The American Mathematical Society

We study the behaviour of extremal eigenvalues of the Dirichlet biharmonic operator over rectangles with a given fixed area. We begin by proving that the principal eigenvalue is minimal for a rectangle for which the ratio between the longest and the shortest side lengths does not exceed 1.066459. We then consider the sequence formed by the minimal kth eigenvalue and show that the corresponding sequence of minimising rectangles converges to the square as k goes to infinity.

  • Details
  • Metrics
Type
research article
DOI
10.1090/proc/14792
Web of Science ID

WOS:000515137800016

Author(s)
Buoso, D.  
Freitas, P.
Date Issued

2020-03-01

Published in
Proceedings Of The American Mathematical Society
Volume

148

Issue

3

Start page

1109

End page

1120

Subjects

Mathematics, Applied

•

Mathematics

•

biharmonic operator

•

shape optimisation

•

rectangles

•

eigenvalues

•

isoperimetric inequality

•

asymptotic-behavior

•

rayleighs conjecture

•

lattice points

•

clamped plate

•

laplacian

•

cuboids

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
MATH  
Available on Infoscience
March 12, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/167207
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés