Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes
 
research article

Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes

Wu, Songmei  
•
Ye, WeiWei
•
Yang, Mo
Show more
2015
Sensors and Actuators B: Chemical

In this work we demonstrate microfabricated thin alumina nanopore membranes as a platform for impedance sensing of DNA immobilization and hybridization. We develop a wafer-scale fabrication of free-standing alumina nanopore membranes with well controlled thickness, pore diameter and overall pore density. One 1 cm x 1 cm single chip contains an array of 69 membranes. Each membrane is 100 mu m x 100 mu m large and 2 mu m thick, with pore diameter of 120 nm. With low pore density of similar to 6 pores/mu m(2), nanopore resistance and membrane capacitance can be recognized clearly in the electrochemical impedance spectrum from 100 to 1 MHz. The total surface area can be further increased by the coating of silica nanoparticles with similar to 20 nm in diameter. During the immobilization of probe ssDNA to (3-glycidoxypropyl) trimethoxysilane functionalized surface, the nanopore resistance drops significantly by 80%, whereas the membrane capacitance increases less than 2%. After hybridization with complementary DNA, the nanopore resistance increases up to 10%. Non-complementary ssDNA has no obvious effect. The detection limit is 12.5 nM in phosphate-buffered saline (PBS) solution. (C) 2015 Elsevier B.V. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Impedance sensing of DNA immobilization and hybridization by microfabricated alumina nanopore membranes.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

Size

1.23 MB

Format

Adobe PDF

Checksum (MD5)

9029fc92002c11b3b62630ea27ea9431

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés