Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Cu Photoredox Catalysts Supported by a 4,6-Disubstituted 2,2 '-Bipyridine Ligand: Application in Chlorotrifluoromethylation of Alkenes
 
research article

Cu Photoredox Catalysts Supported by a 4,6-Disubstituted 2,2 '-Bipyridine Ligand: Application in Chlorotrifluoromethylation of Alkenes

Alkan-Zambada, Murat
•
Hu, Xile  
November 12, 2018
Organometallics

Interest in base metal catalysis motivates the development of Cu-based photoredox catalysts for organic synthesis. However, only a few Cu catalysts have been applied in photoredox reactions, the majority of which contain one or two 1,10-phenanthroline ligands. Here we design a 4,6-disubstituted 2,2'-bipyridine ligand for Cu. Two heteroleptic [Cu(N<^>N)(P<^>P)][PF6] complexes, where N<^>N stands for the 2,2'-bipyridine ligand and P<^>P stands for a bisphosphine ligand, have been synthesized and characterized. They exhibit longer excited state lifetimes and higher Cu(I) / Cu(II) potentials compared to the most widely used Cu catalyst, [Cu-(dap)(2)]Cl. The complex with Xantphos as the P<^>P ligand is an efficient catalyst for chlorotrifluoromethylation of terminal alkenes, especially styrenes, which had been challenging substrates for previously reported photoredox reactions. This chlorotrifluoromethylation method enables the convenient introduction of a trifluoromethyl group into organic molecules under mild conditions, which is important for medicinal chemistry.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Main text.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

2.47 MB

Format

Adobe PDF

Checksum (MD5)

79887b4ebf762ffc0fb4ca641465d849

Loading...
Thumbnail Image
Name

SI.pdf

Access type

openaccess

Size

3.21 MB

Format

Adobe PDF

Checksum (MD5)

3c7dbf8999df7133d689a06b5bc86e6b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés