Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. De novo development of small cyclic peptides that are orally bioavailable
 
research article

De novo development of small cyclic peptides that are orally bioavailable

Merz, Manuel Leonardo  
•
Habeshian, Sevan  
•
Li, Bo  
Show more
December 28, 2023
Nature Chemical Biology

Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.|Cyclic peptides show promise for modulating difficult disease targets; however, they often cannot be administered orally. The authors developed a method to synthesize and screen large libraries of small cyclic peptides while enabling the simultaneous interrogation of activity and permeability. This approach was applied to the disease target thrombin to discover peptides with high affinity, stability and oral bioavailability of up to 18% in rats.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.83 MB

Format

Adobe PDF

Checksum (MD5)

f2cc99abf89dfe13cd08960e1471cf28

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés