Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamics of the charge transfer to solvent process in aqueous iodide
 
research article

Dynamics of the charge transfer to solvent process in aqueous iodide

Lan, Jinggang  
•
Chergui, Majed  
•
Pasquarello, Alfredo  
March 21, 2024
Nature Communications

Charge-transfer-to-solvent states in aqueous halides are ideal systems for studying the electron-transfer dynamics to the solvent involving a complex interplay between electronic excitation and solvent polarization. Despite extensive experimental investigations, a full picture of the charge-transfer-to-solvent dynamics has remained elusive. Here, we visualise the intricate interplay between the dynamics of the electron and the solvent polarization occurring in this process. Through the combined use of ab initio molecular dynamics and machine learning methods, we investigate the structure, dynamics and free energy as the excited electron evolves through the charge-transfer-to-solvent process, which we characterize as a sequence of states denoted charge-transfer-to-solvent, contact-pair, solvent-separated, and hydrated electron states, depending on the distance between the iodine and the excited electron. Our assignment of the charge-transfer-to-solvent states is supported by the good agreement between calculated and measured vertical binding energies. Our results reveal the charge transfer process in terms of the underlying atomic processes and mechanisms.|Solvated electrons can be formed through photo-induced charge-transfer-to-solvent electronic states of halide ions in water. Here, the authors use machine learning accelerated molecular dynamics simulations to follow the evolution of these states for aqueous iodide in detail.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

33.37 MB

Format

Adobe PDF

Checksum (MD5)

a1a44319e03971d5fdb579c192d3a848

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés