Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Boson star normal modes
 
research article

Boson star normal modes

Chan, James Hung-Hsu  
•
Sibiryakov, Sergey
•
Xue, Wei
August 10, 2023
Journal of High Energy Physics

Boson stars are gravitationally bound objects that arise in ultralight dark matter models and form in the centers of galactic halos or axion miniclusters. We systematically study the excitations of a boson star, taking into account the mixing between positive and negative frequencies introduced by gravity. We show that the spectrum contains zero-energy modes in the monopole and dipole sectors resulting from spontaneous symmetry breaking by the boson star background. We analyze the general properties of the eigenmodes and derive their orthogonality and completeness conditions which have non-standard form due to the positive-negative frequency mixing. The eigenvalue problem is solved numerically for the first few energy levels in different multipole sectors and the results are compared to the solutions of the Schrodinger equation in fixed boson star gravitational potential. The two solutions differ significantly for the lowest modes, but get close for higher levels. We further confirm the normal mode spectrum in 3D wave simulations where we inject perturbations with different multipoles. As an application of the normal mode solutions, we compute the matrix element entering the evaporation rate of a boson star immersed in a hot axion gas. The computation combines the use of exact wavefunctions for the low-lying bound states and of the Schrodinger approximation for the high-energy excitations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

777.18 KB

Format

Adobe PDF

Checksum (MD5)

4218e201d4baef778e2a2e6a1fd0bb81

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés