Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Primeless Modular Cryptography (Extended Abstract)
 
conference paper not in proceedings

Primeless Modular Cryptography (Extended Abstract)

Bogos, Sonia Mihaela  
•
Boureanu, Ioana Cristina  
•
Vaudenay, Serge  
2012
Yet Another Conference on Cryptography (YACC) 2012

Most of the known public-key cryptosystems have an overall complexity which is dominated by the key-production algorithm, which requires the generation of prime numbers. This is most inconvenient in settings where the key-generation is not an one-off process, e.g., secure delegation of computation or EKE password-based key exchange protocols. To this end, we extend the Goldwasser-Micali (GM) cryptosystem to a provably secure system, denoted SIS, where the generation of primes is bypassed. Using number-theoretic and linear optimisation techniques, we align the security guarantees (i.e., resistance to factoring of moduli, etc.) of SIS to those of other well-known cryptosystems based on modular arithmetics. %Taking into consideration different possibilities to implement the fundamental operations, We explicitly compare and contrast the asymptotic complexity of well-known public-key cryptosystems based on modular arithmetics (e.g., GM and/or RSA) with that of SIS's. The latter shows that once we are ready to accept an increase in the size of the moduli, SIS's offers significant speed-ups to applications like the aforementioned secure delegation of computation or protocols where a fresh key needs to be generated with every new session. We also developed an efficient extension of SIS to handle more than one bit at a time, using linear codes, which will be omitted herein due to space constraints.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

primelessCrypto_yacc.pdf

Access type

openaccess

Size

370.52 KB

Format

Adobe PDF

Checksum (MD5)

06130b6c4bf1683ab3c7873fff88e2e5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés