Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Magnetic hyperthermia with epsilon-Fe(2)O(3)nanoparticles
 
research article

Magnetic hyperthermia with epsilon-Fe(2)O(3)nanoparticles

Gu, Yuanyu
•
Yoshikiyo, Marie
•
Namai, Asuka
Show more
August 4, 2020
Rsc Advances

Biocompatibility restrictions have limited the use of magnetic nanoparticles for magnetic hyperthermia therapy to iron oxides, namely magnetite (Fe3O4) and maghemite (gamma-Fe2O3). However, there is yet another magnetic iron oxide phase that has not been considered so far, in spite of its unique magnetic properties: epsilon-Fe2O3. Indeed, whereas Fe(3)O(4)and gamma-Fe(2)O(3)have a relatively low magnetic coercivity, epsilon-Fe(2)O(3)exhibits a giant coercivity. In this report, the heating power of epsilon-Fe(2)O(3)nanoparticles in comparison with gamma-Fe(2)O(3)nanoparticles of similar size (similar to 20 nm) was measured in a wide range of field frequencies and amplitudes, in uncoated and polymer-coated samples. It was found that epsilon-Fe(2)O(3)nanoparticles primarily heat in the low-frequency regime (20-100 kHz) in media whose viscosity is similar to that of cell cytoplasm. In contrast, gamma-Fe(2)O(3)nanoparticles heat more effectively in the high frequency range (400-900 kHz). Cell culture experiments exhibited no toxicity in a wide range of nanoparticle concentrations and a high internalization rate. In conclusion, the performance of epsilon-Fe(2)O(3)nanoparticles is slightly inferior to that of gamma-Fe(2)O(3)nanoparticles in human magnetic hyperthermia applications. However, these epsilon-Fe(2)O(3)nanoparticles open the way for switchable magnetic heating owing to their distinct response to frequency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

d0ra04361c.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY-NC

Size

1.7 MB

Format

Adobe PDF

Checksum (MD5)

5082a9b73c76fc1025ef49efe8d25377

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés