Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios
 
research article

Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios

Huang, Jianrong
•
Mellage, Adrian
•
Garcia, Julian Pavon
Show more
March 6, 2023
Applied And Environmental Microbiology

Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II) oxidation to either biomass production (CO2 fixation) or energy generation (nitrate reduction) in autotrophic NRFeOx microorganisms has not been quantified. We therefore cultivated the autotrophic NRFeOx culture KS at different initial Fe/N ratios, followed geochemical parameters, identified minerals, analyzed N isotopes, and applied numerical modeling. We found that at all initial Fe/N ratios, the ratios of Fe(II)(oxidized) to nitrate(reduced) were slightly higher (5.11 to 5.94 at Fe/N ratios of 10:1 and 10:0.5) or lower (4.27 to 4.59 at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1) than the theoretical ratio for 100% Fe(II) oxidation being coupled to nitrate reduction (5:1). The main N denitrification product was N2O (71.88 to 96.29% at Fe/N-15 ratios of 10:4 and 5:1; 43.13 to 66.26% at an Fe/N-15 ratio of 10:1), implying that denitrification during NRFeOx was incomplete in culture KS. Based on the reaction model, on average 12% of electrons from Fe(II) oxidation were used for CO2 fixation while 88% of electrons were used for reduction of NO3- to N2O at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1. With 10 mM Fe(II) (and 4, 2, 1, or 0.5 mM nitrate), most cells were closely associated with and partially encrusted by the Fe(III) (oxyhydr)oxide minerals, whereas at 5 mM Fe(II), most cells were free of cell surface mineral precipitates. The genus Gallionella (>80%) dominated culture KS regardless of the initial Fe/N ratios. Our results showed that Fe/N ratios play a key role in regulating N2O emissions, for distributing electrons between nitrate reduction and CO2 fixation, and for the degree of cell-mineral interactions in the autotrophic NRFeOx culture KS.IMPORTANCE Autotrophic NRFeOx microorganisms that oxidize Fe(II), reduce nitrate, and produce biomass play a key role in carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. Electrons from Fe(II) oxidation are used for the reduction of both carbon dioxide and nitrate. However, the question is how many electrons go into biomass production versus energy generation during autotrophic growth. Here, we demonstrated that in the autotrophic NRFeOx culture KS cultivated at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1, ca. 12% of electrons went into biomass formation, while 88% of electrons were used for reduction of NO3- to N2O. Isotope analysis also showed that denitrification during NRFeOx was incomplete in culture KS and the main N denitrification product was N2O. Therefore, most electrons stemming from Fe(II) oxidation seemed to be used for N2O formation in culture KS. This is environmentally important for the greenhouse gas budget.

Autotrophic NRFeOx microorganisms that oxidize Fe(II), reduce nitrate, and produce biomass play a key role in carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. Electrons from Fe(II) oxidation are used for the reduction of both carbon dioxide and nitrate.

  • Details
  • Metrics
Type
research article
DOI
10.1128/aem.00196-23
Web of Science ID

WOS:000943829500001

Author(s)
Huang, Jianrong
Mellage, Adrian
Garcia, Julian Pavon
Gloeckler, David
Mahler, Susanne
Elsner, Martin
Jakus, Natalia  
Mansor, Muammar
Jiang, Hongchen
Kappler, Andreas
Date Issued

2023-03-06

Publisher

AMER SOC MICROBIOLOGY

Published in
Applied And Environmental Microbiology
Subjects

Biotechnology & Applied Microbiology

•

Microbiology

•

nitrate reduction

•

fe(ii) oxidation

•

culture ks

•

fe

•

n ratio

•

electron balance

•

geomicrobiology

•

iron biogeochemistry

•

nitrous-oxide n2o

•

cell encrustation

•

reactive nitrogen

•

iron oxidation

•

ferrous iron

•

bacteria

•

denitrification

•

biochemistry

•

physiology

•

emissions

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
IIE  
Available on Infoscience
March 27, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/196535
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés