Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tailored solidification microstructures for innovative use of high-density materials in lightweight products
 
research article

Tailored solidification microstructures for innovative use of high-density materials in lightweight products

Bogno, A. A.
•
Valloton, J.
•
Rappaz, M.  
Show more
March 1, 2024
Journal of Alloys and Metallurgical Systems

One approach is to tailor the solidification microstructures of lightweight components using dense materials. This study examines the microstructures and mechanical properties of near eutectic Al-Cu alloys under different thermal histories, covering both high and low solidification rates found in various additive manufacturing techniques. Slow cooled lattice structures of diamond type unit cell were produced at a relatively low cooling rate by a hybrid investment casting process involving 3D printing of the lattice patterns, and rapid solidified powders of various sizes were generated by Impulse Atomization. Microstructural analysis revealed different eutectic morphologies and spacing depending on the cooling rate and location. The alloys strength was increased by spheroidization of their eutectic phases. The alloys eutectic structures were spheroidized using two spheroidization mechanisms, including (i) Thermo-mechanically by plastic deformation of as solidified samples, followed by heat treatment, and (ii) Chemically by addition of Mg and Si to the near eutectic Al-Cu alloy. Both the thermo-mechanical and the chemical spheroidization mechanism are found to improve the mechanical properties of the alloys. This study demonstrates a potential cost-effective use of heavy alloys in high-performance applications through additive manufacturing (e.g. using lattice structures) by optimizing microstructures and enhancing mechanical properties.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1016_j.jalmes.2024.100061.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

10.83 MB

Format

Adobe PDF

Checksum (MD5)

fceabaf5a5fd8702fea2b745942ead09

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés