Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials
 
research article

Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials

Batzianoulis, Iason  
•
Iwane, Fumiaki  
•
Wei, Shupeng
Show more
December 16, 2021
Communications Biology

Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an intuitive means to control such assistive robotic manipulators. However, BCI performance may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It, hence, cannot be used safely for controlling tasks where errors may be detrimental to the user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the user the choice of the robot behavior to do so a matter of personal preference as some users may be more daring while others more careful. We enable the users to train the robot controller to adapt its way to approach obstacles relying on BCI that detects error-related potentials (ErrP), indicative of the user's error expectation of the robot's current strategy to meet their preferences. Gaussian process-based inverse reinforcement learning, in combination with the ErrP-BCI, infers the user's preference and updates the obstacle avoidance controller so as to generate personalized robot trajectories. We validate the approach in experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and avoids real-life objects. Results show that the algorithm can learn user's preference and adapt the robot behavior rapidly using less than five demonstrations not necessarily optimal.

Teaching an assistive robotic manipulator to move objects in a cluttered table requires demonstrations from expert operators, but what if the experts are individuals with motor disabilities? Batzianoulis et al. propose a learning approach which combines robot autonomy and a brain-computer interfacing that decodes whether the generated trajectories meet the user's criteria, and show how their system enables the robot to learn individual user's preferred behaviors using less than five demonstrations that are not necessarily optimal.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42003-021-02891-8.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.31 MB

Format

Adobe PDF

Checksum (MD5)

29a1335b34ee867fe70b0f9f3dd364cd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés