Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Distributed Policy Evaluation Under Multiple Behavior Strategies
 
research article

Distributed Policy Evaluation Under Multiple Behavior Strategies

Valcarcel Macua, Sergio
•
Chen, Jianshu
•
Zazo, Santiago
Show more
2015
IEEE Transactions on Automatic Control

We apply diffusion strategies to develop a fully-distributed cooperative reinforcement learning algorithm in which agents in a network communicate only with their immediate neighbors to improve predictions about their environment. The algorithm can also be applied to off-policy learning, meaning that the agents can predict the response to a behavior different from the actual policies they are following. The proposed distributed strategy is efficient, with linear complexity in both computation time and memory footprint. We provide a mean-square-error performance analysis and establish convergence under constant step-size updates, which endow the network with continuous learning capabilities. The results show a clear gain from cooperation: when the individual agents can estimate the solution, cooperation increases stability and reduces bias and variance of the prediction error; but, more importantly, the network is able to approach the optimal solution even when none of the individual agents can (e.g., when the individual behavior policies restrict each agent to sample a small portion of the state space).

  • Details
  • Metrics
Type
research article
DOI
10.1109/TAC.2014.2368731
ArXiv ID

1312.7606

Author(s)
Valcarcel Macua, Sergio
Chen, Jianshu
Zazo, Santiago
Sayed, Ali H.  
Date Issued

2015

Publisher

IEEE

Published in
IEEE Transactions on Automatic Control
Volume

60

Issue

5

Start page

1260

End page

1274

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143363
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés